
700 D- 19 AIR FORCE INST OF TECH R I T-PATTERSON AF6O N0. SC OO- CETC FIG 9/
CONSTRUCTION OF A SEIERAL PURPOSE COURA6. LANGUAGE FOR USE IN C--ftcw

ASI ED AFIT/GCS/EE/BO-1uhfuuuuuubuS-5 N

EEMIhEEh0hI
-INEmhhhhhh

A c c e s s i n F o r

NTIS GRA&I -

DTIC TA}I
Unlnounced
Justificf tion

B y

Di! trllbut; !Z/

Avail :ibi. it ,1 ce:;

Di-t pc i ul

CONSTRUCTION OF A GENERAL PURPOSE

COMMAND LANGUAGE FOR USE IN

COMPUTER TO COMPUTER DIALOG

- THESIS.,

/. AFIT/GCS/EE/80S-IS ' Wayne D. 'Griess
Captain USAF

DTIC
ELECTE

JUL 1 1981

Approved for public release; distribution unlimited.

t|

AFIT/GCS/EE/80S-15

CONSTRUCTION OF A GENERAL PURPOSE

COMMAND LANGUAGE FOR USE IN

COMPUTER TO COMPUTER DIALOG

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Wayne D. Griess, B.S.

Captain USAF

Graduate Computer Systems

September 1980

Approved for public release; distribution unlimited.

Preface

The AFIT School of Engineering installed, in April 1980, a

Data General ECLIPSE S/250 and NOVA 2/10 computer system to

serve as the foundation for a digital signal processing

facility. To expand the processing capability of the new

facility, a means to interface the NOVA/ECLIPSE computers with

the locally accessible Aeronautical Systems Division CDC CYBER

computer system was desired. I undertook this project and

constructed a general purpose command language that could be

used in varied applications.

I heartily thank Captain Larry Kizer, my thesis advisor,

for his steady encouragement and sure support. I also thank Lt

Colonel James Rutledge and Professor Gary Lamont for their

support. On several occasions, Mr. Hurst D. Carlstiom of the

Avionics Laboratory provided invaluable and timely assistance.

His experience and knowledge of the NOVA/ECLIPSE computers were

eagerly exploited. Finally, I thank my wife Betty and my two

children for their patience, sacrifice, and love. They have

been a source of strength and sustenance throughout this

project. I also reverently give thanks and praise to my Lord

and Savior Jesus Christ for His providence and counsel through

it all.

Wayne D. Griess

ii

Contents

Page

Preface ii

List of Figures v

Abstractvii

I. Introduction 1

Background 1
Problem Statement 2
Scope 5
General Approach and Preliminary Results . . . 5
Sequence of Presentation 7

II. Detailed Analysis/Requirements 9

Man-Machine Interface 9
Computer to Computer Interface 11
Command Language Interfacing 13
The NOVA/ECLIPSE Computers 15

t Modes of Operation 18

III. Development of the Program 21

Development Theory and Background 22
Transparent Terminal Mode 23
The Action Files 26
The Command Language Interpreter Mode . 27

Development of TTERMOP 30
Development of the Action Files 33
Development of MONITOR 39

The MONITOR Task 39
The SYSIN Task 45
Handshaking Conventions 46

IV. Validation 49

During Development 49

After Development 52

V. Conclusions and Recommendations 55

Conclusions 56

Recommendations 57

Bibliography 59

t iii

Appendix A: MONITOR User Manual...............60

Appendix B: Program Descriptive Flowcharts.........81

Appendix C: Loading and Executing MONITOR 105

Appendix D: Program MONITOR Source Listing.........107

Vita..............................189

iv

List of Figures

Figure Page

1 Skeletal Command Action File...............35

2 Sample from Cyber Action File.................36

3 Program MONITOR Structure Chart...................48

4 MONITOR.FR (Part 1)....................82

5MONITOR.FR (Part 2)..................83

6 MONITOR.FR (Part 3)..................84

7 MONITOR.FR (Part 4)....................85

8 MONITOR.FR (Part 5)..................85

9 MONITOR.FR (Part 6)..................86

10 BGIN.SR...............................86

11 PROMPT.SR..............................86

12 GETRSPS.FR........................87

13 CNVRT.SR...............................88

14 TOTERM.SR............................89

15 WRITSYSTM.FR............................89

16 WRSYS.SR...................................90

17 WRITLOCAL.FR...................................90

18 READLWRITS.FR......................90

19 RDAWR.SR.....................................91

20 READYREAD.FR...................................91

21 SENDFILE.FR......... 92

22 EXCLI.SR.....................................93

23 GETFILE.SR (Part 1).............................94

v

24 GETFILE.SR (Part 2) 95

25 RECEVFILE.FR 96

26 TERMOP.SR (Part 1) 97

27 TERMOP.SR (Part 2) 98

28 TERMOP.SR (Part 3) 99

29 TERMOP.SR (Part 4) 99

30 SYSIN.SR (Part 1) 100

31 SYSIN.SR (Part 2) 101

32 SYSIN.SR (Part 3) 102

33 SYSIN.SR (Part 4) 103

34 SYSIN.SR (Part 5) 104

vi- - -

AFIT/GCS/EE/8OS- 15

Abstract

Two computer programs were developed and implemented to

enable intercommunication between a Data General NOVA/ECLIPSE

computer system and another modem linked computer system. One

program, called TTERMOP, allows a user to sit at a NOVA

terminal and interact with a connected system in a transparent

mode. The other program, called MONITOR, is a command language

interpreter that examines and executes instructions contained

within an action file. An action file, consisting of

instruction strings and associated control parameters, is

designed to be dependent upon a connected system with regard to

contents, yet independent of such a connected system with regard

to structure and format. The interpreter is written in FORTRAN

IV with FORTRAN and assembly language modules. Actual

implementation of the programs is accomplished between the

NOVA/ECLIPSE and the Aeronautical Systems Division Control Data

CYBER computer system. ASCII data files between 20 and 35,000

bytes have been transferred between the two interconnected

systems, each transfer initiated by a single string command

acceptable to the interpreter and compatible with a tailored

action file for the CYBER system. The programs were designed to

be flexible enough for use with several different connected

systems, and general enough to be hosted on a system other than

the NOVA/ECLIPSE. However, no attempt is made to implement the

programs outside of the NOVA/ECLIPSE - CYBER environment.

v
vii

CONSTRUCTION OF A GENERAL PURPOSE COMMAND LANGUAGE

FOR USE IN COMPUTER TO COMPUTER DIALOG

I. Introduction

Background

Under sponsorship of the United States Air Force Electronic

Systems Division and the United States Air Force Aerospace

Medical Research Laboratory, the Air Force Institute of

Technology (AFIT) Electrical Engineering (EE) department is

undertaking research in digital signal processing, specifically

digital speech processing and digital image processing. A Data

General Corporation (DGC) NOVA 2/10 computer, a DGC ECLIPSE

S/250 computer, and associated peripheral equipment are being

combined and integrated to form the signal processing facility.

To expand the local processing capability if the facility,

the EE department proposed to interface the DGC computers with

the larger and more sophisticated Control Data Corporation (CDC)

CYBER computer system, which is operated by the United States

Air Force Aeronautical Systems Division (ASD) and which provides

support to AFIT. (Both AFIT and ASD are located at

Wright-Patterson AFB, Ohio.) Interfacing the two systems would

allow intercommunication between the two systems, wherein the

advantage of each system's features could be utilized. The CDC

CYBER system, consisting of a dual CYBER 175 and a CYBER 750,

could readily provide the "number crunching" and file repository

required to help analyze signals. The NOVA/ECLIPSE system could

then be devoted to other signal processing functions, such as

analog to digital/digital to analog conversions. Furthermore,

though the systems would be capable of intercommunication, the

failure of one of the two systems would not mean the failure of

the other system. Thus, each system could stand alone -- or be

interconnected for supplementary processing power.

Expanding the capability of the signal processing facility

by interconnection to the CYBER computer system may not be the

only expansion possible. Many other computer facilities are

available in the AFIT School of Engineering, as well as

throughout Wright-Patterson AFB. The EE department also

proposed, therefore, that the method of interfacing the local

NOVA/ECLIPSE computers be flexible enough to. be used with

systems other than the CYBER, and that the interfacing be

general enough to be applied by separate and distinct systems,

if possible.

Problem Statement

Interfacing the NOVA/ECLIPSE computers to the CYBER system

or any other system may be viewed in two parts. One part of the

interfacing would be to connect the NOVA/ECLIPSE computers to

the CYBER system just as any other peripheral would be connected

or appear to be connected. In this case, the CYBER system would

treat the NOVA/ECLIPSE computers as one of its many terminals,

not recognizing that it is a complete computer system. This

type of interface is not complex, and involves accessing an

input and output port on the NOVA or ECLIPSE via a data line of

the local telephone system to the CYBER system. Connection to

2

the CYBER system would be accomplished in the same fashiorn as

other terminals are connected. A user would call a prescribed

telephone number and couple the telephone line to the data rt

line via a standard modem. After connection, a resident

software program designed for the purpose would be called into

execution to control input and output transfers. Any local

terminal of the NOVA or ECLIPSE, whichever owned the selected

data port, would appear transparently as a terminal directly

connected to the CYBER.

The limitations of this first part are the same as those

limitations any typical terminal has when connected to the CYBER

system. First of all, the language for communication must be

that of the "host" system, and in this instance, it is the CYBER

operating system. Presently, the CYBER operating system

language is called NOS/BE (Network Operating System/Batch

Environment). The users of the signal processing facility

desire a language of intercommunication other than NOS/BE, that

simplifies intercommunication and reduces the complexity of user

access. Furthermore, they desire that such a language be

understandable and portable, i.e., that may be used on more

than one machine for the same purpose. A second and even

greater limitation of the transparent terminal interface is that

no direct computer to computer dialog may take place. Under a

transparent terminal operation, users may access files of the

CYBER or connected system, but cannot access local files. Also,

there is no provision for the direct exchange of information,

such as file transfers, in the transparent mode.

3

A second part of interfacing, then, would be to connect the

NOVA/ECLIPSE computers to the CYBER system or any other system

such that direct information exchanges are possible. Within

this type of environment, a user would have access to files on

the NOVA/ECLIPSE and the connected computer system. For

example, files from the local system could be transferred to

the connected system, executed, and returned. This type of

interfacing is significantly more complex, even though basic

connection techniques remain the same, since files must be

identified and manipulated. Because of this need to manipulate

files, the software program to control information transfers

becomes much more complex particularly; and, hence, requires the

greater concentration of design and development efforts. Just

as in the case of the transparent mode, the users of the signal

processing facility desire a language of intercommunication that

is understandable and portable. The language must be simple and

provide a means to issue commands both to the local NOVA/ECLIPSE

system and the connected computer system, such as the CYBER.

The problem, then, is to develop a method of

intercommunication for use in computer to computer dialog. In

its narrower focus, the problem becomes one of developing a

command language on the DGC NOVA/ECLIPSE computer system for

intercommunication with the CDC CYBER computer system.

4

Scope

An examination of this problem involves researching

computer to computer interconnections, with particular emphasis

upon software development. The compatability of operating

systems is briefly considered, with respect to the degree of

interconnection required at the software level. The scope of

the study also includes the guidelines that surround computer

to computer dialog, humanized input and output, and man-machine

interfaces. Though hardware considerations in the actual

implementation will be considered, the study is not oriented

toward hardware, nor will hardware be examined in any depth.

Further, the study will not specifically be concerned with the

actual digital signal processing capabilities of the computer

system. Although the topics above will be considered, the

study will be devoted almost exclusively to the analysis,

design, development, implementation, testing, and review of

software for interfacing the NOVA/ECLIPSE computers to a

connected computer system (specifically the CDC CYBER) via a

defined command language.

General Approach and Preliminary Results

The first step in constructing a command language for use

on the NOVA/ECLIPSE computers was to search the literature for

ideas and projects of a similar nature. Few articles were found

that directly impacted upon the project at hand, but methods and

parameters for interfacing systems in general were investigated.

I .. . r -5

Other thesis efforts were reviewed for applicability to this

effort, and possible expansion (Ret 4 and 8). The literature

investigation was followed by a period of machine

familiarization, both of the NOVA/ECLIPSE and the CYBER. As the

NOVA/ECLIPSE computer system was installed just prior to the

full scale thesis effort, much time was spent learning the

characteristics of the NOVA/ECLIPSE Real-Time Disk Operating

System (RDOS). Initially, programs taken from operating

manuals were copied and executed. Later, original programs were

developed to duplicate the same actions. These initial efforts

concentrated on assembly language facilities, as these were the

least familiar. The CYBER had been used before and was not

unfamiliar. Nonetheless, operating system characteristics were

examined in more depth.

Design of the software to implement a transparent terminal

operation was next. It is at this point that the details of

interrupts and their operation were examined and tested in

experiments. Once the transparent mode was workable from a

local terminal to another local terminal, efforts turned to

developing the actual command language. Using top-down design

techniques and successive refinement, individual modules were

developed as needed to implement parts of the language. Early

on, the project %s divided into two parts, the output from the

NOVA/ECLIPSE and the input to the NOVA/ECLIPSE. Multitasking

was used to allow asynchronous operation of these two parts. A

further division was made to the design. An action file was

created to actually contain command sequences as needed by the

6

user. The main program became an interpreter to examine and act

upon this action file. Once a working subset of the final

product was available, access to the CYBER system was tried.

The transparent mode software required minor modifications and

transitioned well to on-line execution. The transition of the

command language itself was more painstaking and slow.

Eventually the modules were all developed and combined,

and then several tests and trials were conducted. Once the

program was in a reasonably workable state, efforts began to

more fully and comprehensively document design, development,

implementation, and validation findings. Finally, the project

was put into written form and a user's manual was written to

instruct users in the use of the command language. Follow-on

steps to this process are recommended in the Conclusion, Chapter

V.

Sequence of Presentation

The introduction to this project is followed by an analysis

of the literature regarding man-machine interfaces and command

language structures, an analysis of the computer systems

involved, the transparent terminal operation mode, and the

command language itself. The analyses are followed by an

explanation of the development theo,., behind the software

programs. Once the theory has been presented, the actual

development of the software will be discussed, concentrating

first on a program called TTERMOP -- the transparent terminal

operation mode software, and then a program called MONITOR --

7aI

the actual command language mode software. The discussion of

MONITOR will include a look at various subordinate modules and

routines that comprise MONITOR. A section regarding validation

of the software will follow the software development

description, including its current state and usefulness. The

project will then be summarized, pointing out several

possibilities for follow-on work to this thesis.

I1. Detailed Analysis

An analysis of the problem of interconnecting the

NOVA/ECLIPSE computers to another computer system begins with a

look at interfacing in general. Several elements of the

literature are examined with respect to the concepts of

man-machine interfaces, computer to computer dialog, and

command languages. This introductory look at the problem is

followed by an introduction to the NOVA/ECLIPSE computers and

their primary features. Once the computers have been described,

a closer look at the methods of interfacing for the NOVA/ECLIPSE

are mentioned, particularly with regard to the modes of

operation envisioned.

Man-Machine Interface

It is becomming increasingly important, though it has

always been important, that there be a proper perspective dith

regard to the interaction of people with computers. The past

emphasis seems to have been on the usage of computers; the

newer emphasis is on the usage of people (Ref 5:4). This change

in emphasis is an outgrowth of the volumes of information

computers generate and the ever wider proliferation of

computers. How do, or how should, the two cooperate? James

Martin states:

This difference in thinking talent -- the computer
being good for iltrafast sequential logic and the
human being capable of slow but highly parallel and
associative thinking -- is the basis for cooperation
between man and machine (Ref 5:7).

9

The logical answer to cooperation, then, lies in utilizing

both people and computers in a manner consistent with their

strengths. it is obvious, therefore, that people should not be

called upon to do the kind of work that a computer can do

better. It should be equally obvious, as well, that computers

should not be called upon to be substitute people. The future

will undoubtedly lead to ever greater computer maturity, to the

point where some human functions can be paralleled or

duplicated. The present, however, would seemingly be better

served if people and computers, each with their relatively

mutually exclusive spheres of advantage, were deliberately and

constructively meshed together.

With this view in mind, human beings could more profitably

gain from computers if computers were creatively linked to

enhance their speed, throughput, and intercommunication. And,

such computer systems would better profit people who use them,

if their output and input facilities were readily understood,

easily manipulated, functionally controlable, and consumer

dependent. The point where interaction culminates in

identifying the most effective techniques for enabling a user to

access needed data quickly, easily, and in a relatively natural

manner, is the user-computer system interface, called the

man-machine interface (Ref 3:1-1).

10

Computer to Computer Interface

Linking computers together is an action to improve upon the

individual computer's capability and to provide a more powerful

resource for users. Just as input and output data is a dominant

factor in the application of single computers (Ref 10:119), so

it is with multiple computer systems. It should not be

surprising, therefore, that intercomputer or interprocessor

communication is primarily at the data level (Ref 12:67).

Interfacing, or linking computers together, is widely

discussed throughout the computer literature. Many types of

interfacing are possible, and many terms are used to describe

differing methods and degrees of interface. An article in

Computing Surveys presented a naming scheme or taxonomy for

identifying various systems of interconnected computers (Ref

2:197-213). The scheme was presented as a tree diagram of four

levels, wherein the two highest levels were concerned with

strategic (policy) issues and the two lower levels were

concerned with tactical (implementation) issues. The authors

defined two terms of interest with regard to communication

interconnection. The first term, path, is a medium by which a

message is transferred between the other system elements, such

as wires or buses. The other term was switching element, an

"intervening intelligence" between the sender and receiver of a

message. The switching element affects the destination of the

message in some way.

€1

Within this scheme, communication interconnection is either

direct or indirect. A transfer path can be either dedicated or

shared, and a variety of system architechures may be employed to

interconnect computers. As an example, a multiprocessor system

is described as direct, having no need for a transfer control

method, and using a shared path transfer structure with a

central memory system architechure. As another example, an

irregular network system architecture follows from an indirect

communication interconnection, decentralized routing, and a

shared transfer structure. In the authors' scheme, the variety

of interconnections may range from a complete, dedicated

interconnection to an indirectly, decentralized, shared path

window. Nonetheless, the common element used to describe all is

the data level communications path.

In any interconnected computer system, a protocol is

necessary. "A protocol is essentially a set of conventions

between communicating processes on the format and content of

messages to be exchanged (Ref 1:4-3)." The protocol can be

easily determined in some computer links by simply adapting the

internal protocol of one of the individual computers.

In all cases, computers are interconnected to benefit the

users. The better and clearer the interconnection of computers,

the less likely the confusion between man and machine.

Further, the more likely will be the usefulness of the system

for the people it was meant to serve. From simple

interconnections of a dedicated nature to large networks,

computer to computer communications is dealt with at the data

12

level and is the starting point for future interconnection

efforts.

Command Language Interfacing

The problem of interfacing the NOVA/ECLIPSE computers with

other computer systems is one of command language interfacing,

in which the goal is to construct a general purpose command

language that provides the means for computer to computer

dialog. This is another element of computer to computer

interfacing, in which the connecting feature is a command

language itself. Command languages collectively form a category

of intercomputer connectivity, in which the type and purpose of

a command language may vary widely from use to use. One of the

most widely recognized command languages is that of the UNIX

(trademark of Bell Laboratories) Time-Sharing System developed

by the Bell Telephone Laboratories (Ref 11:1905), in which the

most visible system interface is the "shell" or command

language interpreter, through which other programs are called

into execution singly or in combination (Ref 6:1900). The UNIX

shell is a high-level programming language that provides users

with an interface into process related facilities of the UNIX

operating system. The language is powerful, concise, flexible,

and, once it becomes familiar, easy to use. It serves as a

useful basis of comparison for other command languages and was a

source of guidance for this project. However, the degree of

difference between the developed command language for the

NOVA/ECLIPSE system and the UNIX shell is singularly

13

significant. To meet the particular constraints of this

project, the NOVA/ECLIPSE command language was developed as an

interpretive process that examines tailored files, called action

files, for individually connective systems. In fact, the

pattern of development parallels the so-called PROCEDURE files

utilized within the CDC NOS/BE (Ref 7:5-21 - 5-38).

The CDC PROCEDURE files allow several CDC CYBER commands to

be combined and ordered as desired into a single package for

execution. Each file has a header and body, of which the header

statement starts the header. The header starts with the keyword

PROC., contains the name of the procedure, and ends with the

names of arguments to be used within the procedure. The next

statements of the file are the body, and the body is terminated

with an end-of-record. The body is made up of control

statements, which are inserted into the job control stream when

the PROCEDURE file is called into execution. The PROCEDURE file

is called into execution by a call-by-name statement or by a

call statement that begins with BEGIN. The operating system

makes the appropriate parameter and variable substitutions

within the PROCEDURE file, and then executes the file's body of

statements. Thus, via PROCEDURE files, users of NOS/BE may

combine a sequence of control statements (commands) into a

single command with a variable number of arguments. The entire

sequence may be executed by a single reference to the name of

the PROCEDURE file, eliminating the need for a user to repeat

minor, often used commands, such as REWIND. It also allows the

computer operating system to keep track of the entire command

14

sequence without user intervention.

The NOVA/ECLIPSE Computers

The DGC NOVA and ECLIPSE computers are both 16 bit machines

installed within the digital signal processing facility of the

AFIT EE department. The NOVA 2/10 and the ECLIPSE S/250 share a

ten megabyte disk through an Inter-Processor Buffer, which

arbitrates simultaneous disk access. Each computer operates

under a Real-Time Disk Opernating System (RDOS), which is

partially resident in core memory as well as on the disk itself.

Each operating system starts with generation of SYSGEN, a

program that permits the RDOS to be tailored to the hardware and

software configurations available at a location. This system

generated program includes, among other things, the number of

printers, the number of teletypes, and the number of other

devices to be connected to and recognized by the operating

system. The SYSGEN created program for the ECLIPSE is called

ESYS; the SYSGEN created program for the NOVA is called NSYS.

NSYS, however, includes the generation of a secondary teletype

for both input and output, denoted by device codes $TTIl and

$TTOl, respectively. Once a device code is system generated,

the operating system identifies the interrupts of the device and

appropriate handling procedures. This investigation required

user defined interrupts and handlers for these two particular

devices. Hence, another program was generated, called NSYSl, in

which the operating system (RDOS) did not "know" about device

codes $TTII and $TTOl.

15

Though both the NOVA and ECI t'SE may sh;jre disk f i es

there are differences in their hardware features and

capabilities. The AFIT EE departrient decided to use the NOVA

computer as the interface link to any other connected system and

most peripherals, thereby freeing the larger and faster ECLIPSE

for actual processing of data. In the remainder of this thesis,

therefore, the term NOVA/ECLIPSE will be used to indicate that

both the NOVA and ECLIPSE computers are available, yet only the

NOVA is utilized in the actual interfacing to the connected

systems. Thus, all device codes and descriptions may be

thought of as pertaining only to the NOVA 2/10.

In order to connect any other computer system to the

NOVA/ECLIPSE computers, access is required to the computers

themselves. It was decided to make use of standard RS-232

interface connectors and modem links, wherein the NOVA device

codes of $TTIl and $TTOI would serve as device ports for the

connected system. Information from the NOVA/ECLIPSE to the

connected computer system would be transmitted via device code

$TTOl. Information from the connected computer system to the

NOVA/ECLIPSE would be transmitted via device code $TTI1.

Because of the way RDOS operates, each device code used must be

assigned an integer channel number. Accordingly, throughout the

software and documentation that is developed, device codes and

channel numbers will refer to the same entities, particular

device codes and individual channel numbers being equated at

various times.

16

The basic method of interaction with the RDOS is through

the Command Line Interpreter (CLI), a program that accepts

command lines from the console and translates them into RDOS

commands. Through the CLI, high-level compilers like FORTRAN

may be invoked, as well as the assembler and other utilities.

Interface into the RDOS can also be achieved via system calls

and task calls. Both of these calls were utilized within the

development of the software for this project. Essentially, the

RDOS can be addressed directly via system calls in a program.

The general form of a system call is (Ref 9:3-1):

SYSTM
command mnemonic
error return
normal return

The mnemonic .SYST4 precedes each system command, which passes

control through the RDOS task scheduler to the system call

processor, a core-resident portion of RDOS. The task monitor

saves the program (or task) environment in a special block

called a Task Control Block (TCB) and saves the contents of

location 16, the User Stack Pointer (USP), before passing

control to the call processor. Upon execution of a system call,

the RDOS takes the error return if it encounters some impediment

while executing the call. Accumulator two contains an error

code that describes any error condition and may be displc.yed by

the user. If the call succeeds, the RDOS takes the normal

return. System calls are detailed in the RDOS Reference Manual,

Chapter 3 (Ref 9:3-1 - 3-12). A task call is similar to a

system call, except for the following points. Task calls have

no .SYSTM mnemonic before the task command mnemonic. The RDOS

17

executes task calls in user address space, whereas system calls

are executed in operating system space. And finally, many task

calls have no error returns. The details of task calls may be

found in the RDOS Reference Manual as well (Ref 9:5-1 - 5-8).

Other conventions of the RDOS and NOVA/ECLIPSE computers will

be introduced and explained as encountered in the discussion of

the project development.

Modes of Operation

The most direct method of connecting the local NOVA/ECLIPSE

computers to any other computer system, particularly the locally

accessible CDC CYBER system, is via a standard RS-232 interface

link to one of many available modems. The simplest method of

interconnection is to allow a local NOVA terminal to act as a

transparent CYBER terminal, i.e., as if the NOVA terminal were

directly connected to the CYBER and not the NOVA. This requires

a software interface that allows the NOVA computer to accept

data in from the CYBER, display to the local terminal, and

vice-versa. This at least allows access via the NOVA computer

to the connected computer system, but it does not allow file

transfers or any other direct intercommunication between

systems. Thus, to extend the concept further, additional

software is needed to enable direct access from one computer to

the other. One method of doing this is to create a program to

mesh the NOVA with a particular system to the degree that files

on either system are accessed by the user on the NOVA. It was

recognized early that such software should be designed to be

18

independent of a particular system. Hence, a more general

software product was desired that allows interaction between the

NOVA/ECLIPSE and a variety of other computer facilities.

Since each computcr system is somewhat different, a method

was needed to confront these differences in a general fashion by

the local NOVA/ECLIPSE system. If a particular segment of the

software was designed to be compatible with a particular

connected system, then the NOVA would have to be able to select

that software and use it on demand. Further, the act of

selection should not Lie the NOVA to the selected system, as a

different system may be desired at a later time. To meet these

constraints, the pattern of a so-called action file was

conceived, based upon the general concepts of a PROCEDURE file

as utilized in the CDC NOS/BE.

To extend this concept to the local NOVA/ECLIPSE system,

both the action file (patterned after the PROCEDURE file) and a

method of reading and acting upon the action file was required.

Once one or more action files could be constructed on the NOVA

system, how could they be utilized? In the simplest context,

the action file may be thought of as a simple list of command

sequences to be executed by the system. A method was needed to

read each sequence of instructions and send them to the

connected system to be executed. This presented additional

considerations. First of all, the action file sequences, if

more than one, must be distinguishable from each other. When

and where would one sequence start and end? Secondly, the

connected system may respond at some time and in some fashion to

19

inputs, perhaps requiring that responses somehow be

acknowledged. Thus, what responses would be expected and how

or when should they be acknowledged? Thirdly, sending

instructions to the connected system limits the local system in

taking independent action. Thus, there must be some capability

of instructing the local system in the midst of action file

execution. Each of these considerations and questions led to

the idea of an action file interpreter -- a program that would

seek out the desired action file, initiate and terminate

selected command sequences, allow for responses to the connected

system, and alert the local NOVA/ECLIPSE system to necessary

inputs and outputs. Thus, the basic idea for computer to

computer dialog regarding the NOVA/ECLIPSE system revolved

around the design and development of action files peculiar to

possible connected systems and a general interpreter for the

action files. The process of designing these began by

considering a specific system to work with, and the natural

choice was the CYBER system.

20

III. Development of the Program

The development of the software to permit the NOVA/ECLIPSE

computers to be interconnected to another computer system was

done in a top-down manner, using successive refinement. This

chapter describes the software development of three specific

software parcels: (a) program TTERMOP, (b) program MONITOR, and

(c) the action files. The program TTERMOP is a program that

allows the user on the NOVA/ECLIPSE terminal to operate in the

transparent terminal only mode. The program MONITOR is the

command language interpreter that reads and acts upon selected

action files. The action files are created in a prescribed

manner that meets the expectations of the interpreter. The

action file referenced within this text is that created and

implemented to intercommunicate with the CDC CYBER computer

system. The development of MONITOR and the action files was

interdependent and cannot be artificially separated.

Nonetheless, the following text does treat the development of

each somewhat separately, first describing the generation of the

action files and then the program MONITOR. Before these

discussions are presented, some theory and background concerning

the development are presented, in order to acquaint the reader

with the overall concepts and implementation conventions.

21

Development Theory and Background

After analyzing the problem and deciding that three

partitionable software products were to be developed -- program

TTERMOP, program MONITOR, and the action files -- the

alternative methods of accomplishment and the tools to be used

in the development were considered. Some factors bearing upon

the considerations were the stated objectives of the solution to

the problem itself. The program MONITOR should be as flexible

as possible, so as to be utilized with as many connected

systems as possible. Also, program MONITOR should be as

general as possible, so as to be a completely portable (to the

degree possible) program that could be hosted on other systems,

in addition to the NOVA/ECLIPSE. This dictated that the action

files be dependent upon the connected system for content, but

independent of the connected system as far as structure. One

final factor was to develop a system that enabled the

NOVA/ECLIPSE computers to interact with the CDC CYBER computer

system.

In consideration of these factors, the software needed to

be developed in as high-level a language as permissible, thereby

supporting its generality. PASCAL was a logical choice. A

structured language, such as PASCAL, leads to simplified data

structures and more straightforward file structure

manipulations. In addition, PASCAL has powerful features, such

as recursion, that enable complex algorithms to be more readily

designed and developed. Nonetheless, PASCAL was not available

22

on the NOVA/ECLIPSE computers at the time of development.

Other structured languages that seemed to lend themselves to

this type of undertaking were not available either. FORTRAN IV

and FORTRAN V were available. FORTRAN IV was selected because

it was available, is a high-order language, and is, perhaps, as

universal a language as exists. FORTRAN V was nit selected

because of the case for FORTRAN IV and the fact that FORTRAN V

is essentially a superset of FORTRAN IV. Thus, if a user

chooses, FORTRAN IV may be extended to FORTRAN V. It also

seemed reasonable at the outset to expect to use some assembly

language programs to implement device handlers and routines that

depended heavily upon the operating system characteristics.

Thus, both the DGC FORTRAN IV and assembly languages are used to

develop the software parcels. Some variations from the

American National Standards Institute (ANSI) standard FORTRAN

were utilized, but only to enhance readability and

understanding. None of the uses would preclude adaptation to

other system FORTRAN versions, depending upon the assembly

language that may be required for another system.

Transparent Terminal Mode. The idea to create a

transparent terminal mode of operation was two-fold. First,

the terminal mode would at least allow access to another system.

Depending upon the ultimate limitations of a command language,

such a mode would be desirable to permit detailed interaction

with a connected system not possible at the higher level of the

command language. Further, such a mode would serve as a handy

option for transitioning in the middle of any command langauge

23

execution. Secondly, the development of a terminal mode would

be a prelude to other developments. Such a prelude would

provide system familiarization and understanding in a less

complex environment.

The first and major obstacle in developing the program

TTERMOP was the method of interaction to be impleme.ted between

connected systems. The transparent terminal mode needs to be

controlled by the user at the local NOVA terminal. Outputs to

the connected computer system are generated by entries made by

the terminal user. However, responses from the connected system

are less controlled, and, more generally, may vary from one

system to another. There may be responses during the access

initiation process, after individual instructions are received,

or upon other occasions unexpected by the user. Implementation

of interrupt servicing seemed the logical alternative to

overcome this control problem in the most general case. This,

in turn, also lead to a problem in implementation, for

interrupts are usually serviced by the operating system for

devices known by the system, i.e., generated when the system is

initially brought up to operation. In order to use interrupts,

then, either the system generated interrupt service routines had

to be changed to allow different interrupt handling, or the

interrupts had to be removed from the purview of the operating

system and be generated by the developed software. The latter

alternative was chosen, since changing the operating system

handlers was more complex and would still leave the handlers in

the system. Other users with other programs would not

24

necessarily find changed operating system handlers useful or

expected. As mentioned in Chapter II, the device codes to be

used for purposes of intercommunication are $TTOI and $TTI].

Both these devices and their codes are removed in the system

generated program NSYS1. Thus, development of TTERMOP was now

possible using defined interrupts and handlers within the

software itself.

A second obstacle existed that hindered TTERMOP

development. Even though interrupts were available to permit

servicing for the two NOVA/ECLIPSE port devices ($TTOl and

$TTII), the program software needed to respond to both the local

terminal inputs and outputs -- interrupts that remained defined

by the operating system -- and the connected system inputs and

outputs -- interrupts that were program defined. The

possibility existed that the program might be servicing one of

these sets of inputs/outputs, and lose inputs/outputs from the

other set. Some method of asynchronous interaction was needed

to insure both sets of inputs/outputs were equally and promptly

handled. The NOVA/ECLIPSE system has such a capability, called

multitasking (Ref 7:5-1+). Multitasking permits a single

program to contain multiple, competitive tasks. A task is a

complete, self-contained execution path through a program, which

demands system resources. In a single task environment, a

program has a single unified path connecting all its program

logic, no matter how complex the logic branches. In a

multitask environment, a program may have two or more logically

distinct tasks, each with its own priority. Each of these

25

distinct tasks performs a specified function asynchronously and

in real-time. In the RDOS, the Task Scheduler allocates

central processor control to the highest priority task that is

ready to perform its function. The multitasking feature of the

RDOS is used, then, to put the interrupts for the connected

system into one task for processing, while the interrrupts for

the NOVA terminal are put into a logically distinct task. To

insure the user maintains control, the task that controls the

NOVA terminal is given the higher priority.

The Actiun Files. The concept for the action file came

directly from the CDC NOS/El PROCEDURE files (Ref 7:5-21 -

5-38). A separate action file was conceived for particular

computer systems to be interfaced with the NOVA/ECLIPSE

computers. Each action file contains a sequence of comm~ands, of

which each command in the sequence instructs either the

NOVA/ECLIPSE or the connected system. These instructions serve

the same purpose as the body of the PROCEDURE file, i.e., they

provide the control statements necessary for execution of a

command. The header statement of the action file was conceived

to be essentially the same as that for the PROCEDURE file. It

contains a keyword that identifies the action file, such as

.CACT for the CYBER action file. The keyword is followed by a

command name and argument parameters. To facilitate

segregation of each sequence from the next, another keyword is

inserted into the file between sequences. This keyword is END..

Similarly, to denote the end of the action file, the keyword

FINISH. is used. To allow the action file to be as powerful as

26

possible, and ,hence, the interpreter as general as possible, a

method to incorporate expected system responses is developed.

At the beginning of each action file, the control character "I"

must be included . It is followed by up to two separate

responses that may be expected of the system. (These responses

are used in the interpreter to detect the occurrence of system

responses and to detect the end of such responses.) Other

features of the action files follow logically from the

requirements of the program MONITOR.

The Command Lanpuage Interpreter Mode. The command

language interpreter is developed to serve not only as the

interpreter of the selected action files, but as the executive

for the entirc software development. As such, the program

YONTOR is the fundamental part of the software package.

Program MONITOR is developed to instruct the interactive user

step by step in the execution of the software that forms the

command language. Thus, the program first identifies itself via

a display on the user's terminal (NOVA/ECLIPSE) and identifies

the action files that are available for selection. (Four action

files are available to the user, of which only one is totally

implemented. The others are shells that await future

completion. The complete action file is for the CDC CYBER

computer system, called .CACT Two action files are for

computers that are accessible locally, even though connections

have not been attempted. They are called .DACT and .VACT . The

last action file is completely arbitrary, and is available for

any user to generate as desired. This file, called .MACT,

27

presents the ultimate in flexibility -- the creation of a

totally user-defined and user-modifiable action file for any

system.) Program MONITOR requests the user to select an action

file and then requests the user to LOGON. (Procedures for LOGON

and the othcr commands are contained in the MONITOR User

Manual, Appendix A.) To notify the user that a response is

required, program MONITOR provides a prompt. Program 1NONITOR

also screens input commands to determine if they are valid; for

example, rejecting commands not within the action file, commands

that are too long, commands that are without the necessary

arguments, and commands that contain syntax errors.

Program MONITOR was developed in a simple configuration to

expedite its implementation. In this configuration, commands

are required to be entered and followed by exactly the number of

arguments expected, that is, the number of arguments indicated

after the command name in the action file. Furthermore,

commands must be in the same order. There are no optional

arguments nor default arguments. This configuration simplifies

the decision-nmaking of the interpreter with regard to parameter

substitution. Also, there are two control options that the user

may exercise at any time in lieu of command strings. One of

these is the entry "AT", (an up-arrow and T) which causes the

program MONITOR to relinquish control to the terminal operation

only mode. The other option is the entry "^L", (an up-arrow

and L) which causes a return to the RDOS CLI.

A similar obstacle to that of TTERMOP hindered development

of MONITOR. This was the control of inputs and outputs of the

28

connected system and inputs and outputs of the NOVA/ECLIPSE.

The solution was again multitasking, with one task monitoring

NOVA/ECLIPSE input/output and the other task monitoring the

connected system's input/output. An additional obstacle not

encountered before concerned instructing the NOVA/ECLIPSE RDOS

from within tie program MONITOR. As the program MONITOR

executes in RDOS already, some method to exit the program

MONITOR is needed in order to instruct RDOS via its own command

language, te CLI. It is equally necessary, however, to be able

to reenter MONITOR immediately after any instruction is passed

to RDOS, and to enter at the location from which the exit

occurred. One feasible means of doing this is to swap out the

program MONITOR, swap in the RDOS CLI, and then swap right bac.

to the program MONITOR. The process of swapping is available on

the NOVA/ECLIPSE system via system and/or task calls to the

operating system.

Swapping as implemented on the DGC system is a process

whereby a program is called by name into execution. The calling

program is swapped out of memory and the called program is

swapped into memory. Within the RDOS, the CLI normally operates

on what is called level zero. This is the highest of five

possible levels of program execution. When a typical program is

called into execution by the CLI, the program is executed on

level one. In effect, the CLI is swapped out of memory and the

executing program is swapped into memory. Going from one level

to another is essentially a stack operation. If the CLI is

executing on level zero and a program is called into execution,

29

the execut i ng program is pushed onto the stack. Returning to

the CLI at the progrnm's conclusion is essentially a pop of the

stack. The latest program on the stack is the level being

executed. If the CLI is executing on level zero, it is not

possible to exccute another program from the CLI without that

program starting; execution at its beginning. The ebility to

comaunicate with RDOS, however, can be accomplished as desired

by calling the CLI into operation on level two. Then, when the

CLI execution is complete, an appropriate pop of the stack will

return to the level one program. Furthermore, the return will

be to the location from which the program called the CLI into

execution on level two. Executing the CLI on level two can be

limited to a single instruction or a group of instructions that

are passed at the time of the call to swap to the CLI. The

process is described more completely in the RDOS Reference

Manual, Chapter 4 (Ref 7:4-2).

Develcpment of TTERMOP

As mentioned earlier, the port device codes $TTIl and $TT01

were incorporated into the software of TTERNOP and MONITOR,

rather than leaving the operating system to define them in its

SYSGEN program. The advantage of identifying the device codes

at run time is that new interrupt handlers can be designed to

handle interrupts as desired. By doing this, any input to the

NOVA/ECLIPSE computers from the connected computer system

generates an interrupt via device code $TTll. The interrupt

service routine essentially accepts the input and stores it in a

30

buffer for later disposition. Similarly, any output from the

NOVA/ECLIPSE computers to the connected computer system

generates an interrupt via device code $TTO1. This interrupt

service routine simply clears the particular interrupt, allowing

the connected computer to handle the NOVA/ECLIPSE oatput in its

own fashion. (It should be noted that all inyt and output is

limited to ASCII characters in all the software developed.)

Once the input from the connected computer system is

received by the NOVA (where in fact the device ports exist) and

is stored in a buffer, a separate section of code disposes of

the buffer itrelf. Two mointers are established. One pointer,

called INPTR, joints to the next empty location in the buffer.

The other pointer, called OUTPTR, points to the last buffer

location actually disposed of by program TTERMOP. If the buffer

has not been accessed by the program, OUTPTR started and remains

at the buffer's beginning. If the INPTR and OUTPTR point to the

same location, the program knows that the buffer is "empty."

Conversely, wheneve" the pointers are not the same, input has

been received and stored in the buffer. The buffer itself is

designed to be 132 characters long. This arbitrary length was

selected with the reasonable expectation that the buffer would

never overflow, i.e., that the INPTR would not be 132 characters

ahead of the OUTPTR at any time. The expectation seemed

particularly reasonable when considering the 300 baud rate of

the CDC CYBER, used as the implementing connected system. This

should be the case for higher baud rates as well, particularly

1200 baud. Even at rates up to 4800 baud, the buffer should be

31

ad equte.

The section of code in program TTERMOP that looks at the

buffer continually is named LINERD, and is called as a separate

task within the multitasking framework of the program TTERMOP.

LINERD has a priority of ten, whereas the main task of TTERMOP,

called TERMRD, has a priority of zero. By the conventions of

the RDOS, the task with the lower number has the higher

priority. The main task TERMRD reads input from the NOVA

terminal and transmits it directly to the connected system via

device code $TTOl. The task LINERD simply takes input from the

input buffer, and displays it to the NOVA terminal. In

operation, then, the user generates output and usually awaits

input. Since the output program has higher priority, the user

controls the program. While the user awaits input, the lower

priority task LINERD seizes control of the processor to look for

that input. At rates up to at least 1200 baud, both tasks

appear to operate simultaneously and are in fact seizing control

on a character by character basis.

Program TTERMOP has several parts to it. The program

contains the separate, logical tasks LINERD and TERMRD. The

program also has the system calls to identify and generate

device codes $TTOl and $TTIl. Finally, TTERMOP has the

interrupt handlers defined within its source code also.

Altogether, the program provides the necessary software to make

the NOVA/ECLIPSE user operate off of the connected system, in

particular the CYBER system, transparently. Since the majority

of the functions dealt with in this program are at the device

32

driver level, the entire source code is assembly language. A

higher-level flowchart of the program TTERMOP is not explicitly

provided. However, a flowchart for program TERMOP contained in

Appendix B is exactly the same for TTERMOP, and may be referred

to for information concerning TTERMOP.

Program TTERMOP is executed by entering the directory

DIALOG and typing on the NOVA terminal TTERMOP. Once a

telephone connection via a modem is established between the

CYBER and the NOVA/ECLIPSE, all subsequent terminal action is as

if the NOVA terminal were directly connected to the CYBER. All

NOVA/ECLIPSE operations are transparent to the user during the

execution of the program TTERMOP. Exit from TTERMOP may be

accomplished by typing in an up-arrow "-" at any time, thus

reverting the user to the RDOS CLI.

Development of the Action Files

One of the very first things considered when starting the

construction of the general purpose interface for the

NOVA/ECLIPSE computers was the minimum number of instructions

required as input by a connected computer system, in order for

that system to execute functions on its own file structure.

This minimal set of instructions formed the initial action file

and served as a forerunner of the final product. As stated in

Chapter II, the CDC CYBER PROCEDURE files were the pattern

behind the design of the action files. Thus, the initial action

file was closely structured after the PROCEDURE file. Both

files have header statements that declare the name and arguments

33

of a particular command sequence. Both files have a body of

statements that consist of the control command sequences, and

both files have all entries arranged sequentially. This

sequential arrangement is, in turn, the logical and convenient

means by which to examine the action files. Once the

interpreter selects an appropriate action file and receives a

command input, the file is sequentially examined from the

beginning until a command name matches the input command. Once

the match is made, each instruction within the sequence is acted

upon and executed sequentially as well. Keywords are inserted

within the action file to isolate instruction sequences and

indicate file beginning and end. Again borrowing heavily from

the PROCEDURE file, the start of each action file is simply the

file itself. The start of a particular command sequence in the

file is denoted by a single period appearing as the first

character in the line of the sequence, followed by a descriptor.

The descriptor for the CDC CYBER action file is the word ".CACT"

This descriptor is followed by the name of the command

sequence and any arguments as required. The arguments are

simply a series of sharpsigns (#) and integers, which denote

the order and position of the arguments in the header

statement. (As noted earlier, position is fixed.) Each entry is

arbitrarily separated by commas. After this first line,

referred to as the action file header, is a list of command

instructions that comprise a command sequence. To delimit

individual command instruction sequences, the keyword "END." is

used. Finally, to indicate the last line in the action file,

34

the keyword "FINISH." is irserted. Figure I shows a skeletal

outline of an action file for the CDC CYBER as presented thus

far.

.CACT,CONMANDNAMEI ,#l ,##2
YYYYY dummy instructions that

ZZZZZ form a command sequence

END.

.CACT,COMMANDNAME no arguments

YYYYY

zzzzz

END.

.CACT,CONMANDNANEN,#I,#2,...,#N

YYYYY

zzzzz

END.

FINISH.

Fig 1. Skeletal Command Action File

With respect to the action file, the command language

interpreter reads the action file, matches the desired command

name, and then sends the instructions within the matched

command sequence to the connected system or to the local

NOVA/ECLIPSE system for execution. To simplify the decision

process of the interpreter, the action file includes control

characters within each command sequence to direct interpreter

handling. Each of these control character sets has two control

characters. For example, an instruction within the sequence

that calls for writing to the local NOVA terminal is preceded by

the control character set WL. Other examples of control

35

character sets are WS, write to the connected system; RS, read

from the connected system; and RW, read from the local system

terminal and then write a single carriage return to the

connected system. Two particular control character sets are RC

and WC. These character sets precede an instruction that is

directed to the NOVA/ECLIPSE RDOS. The first set results in a

disk file on the NOVA/ECLIPSE being read and copied to the

connected system. The second set results in a file being

written to the NOVA/ECLIPSE disk from information copied from

the connected system. These character sets put into motion a

swap to the RDOS CLI, as explained briefly in Chapter II and

more fully described in the next section.

C THIS COMMAND PERMITS LOCAL FILES TO BE SENT
C CORRECT INPUT IS: PUT,LFN,SFN,ID,SFPASSWRD
.CACT,PUT,#1,#2,#lr3,#4
WS COPYBF,INPUT,ZQY

WC XFER/A #1 QQVV/R
WS %EOF
WS REWIND,ZQY
WS REQUEST,ZQZ,*PF
WS COPYBF,ZQY,ZQZ
WS CATALOG,ZQZ,#2,ID=#3,RP=999,PW=#4
WS RETURN,ZQZ,ZQY
END.
C THIS CO1MAND RECEIVES SYSTEM FILES
C CORRECT INPUT IS: GET,SFN,ID,SFPASSWRD,LFN
CACT,GET,#1,#2,#3,#4

WS ATTACH,QZQ,#l,ID=#2,PW=#3

RR
WS COPYSBF,QZQ,OUTPUT
RC XFER/A VVQQ #4/R
WS RETURN,QZQ
END.

Fig 2. Sample from CYBER Action File

36

An exarple portion of the final CYBER action file is

illustrated in Figure 2. The first command name strewn is PUT.

This command takes a disk file resident on the NOVA/ECLIPSE

system and transfers the file to permanent storage on the CDC

CYBER system. The command name PUT is preceded by the keyword

.CACT and followed by the place holders for four arguments.

Therefore, the PUT command rcquires four arguments. In order,

these arguments must be the local file name (including any

directory specifiers) of the NOVA/ECLIPSE disk file, the system

file name to be used on the CYBER, the user identification

number or problem number the file is to be stored under, and the

CYBER syst m passwords. (Since each argument 2araneter is

required, a parameter must be used for the password. In this

case, and only in this case, a zero entry may be used to

indicate no password.) The first instruction in the PUT command

sequence is preceded by WS, and, as with all instructions,

arbitrarily starts in column nine. Thus, the instruction

consisting of the string -- COPYBF,INPUT,ZQY -- is to be sent to

the CYBER. The next command in the sequence is preceded by WC.

This means that the file with the name entered in the position

of argument one is to be copied from the NOVA/ECLIPSE disk to

the CYBER system. All the rest of the commands in the sequence

are preceded by WS, and explicitly instruct the CYBER to store

the transferred file into permanent file storage, the user input

arguments having been substituted for the argument parameters

within the action file by manipulation of the interpreter. The

command sequence terminates with END.

37

The second command name shown is GET. This command takes a

file in permanent storage on the CYBER and transfers the file

to the NOVA/ECLIPSE disk. The command GET is also preceded by

the keyword .CACT and followed by the placeholders for four

arguments. The treatment of these four arguments is exactly the

same as that for PUT, with the order and position strictly

observed. lence, the arguments in order must be the system file

name, the user identification number, the system file password,

and the local file name. The commands in the sequence preceded

by WS are handled exactly as described for PUT above. A blank

corim'nd line is preceded by the control character set RR, which

is sufficient to tell the interpreter that the local

NOVA/ECLIPSE needs to ready itself for a read from the CYBER.

Essentially, the character set RR activates a subroutine to

create a temporary file that will subsequently be written into,

when the next instruction in the action file preceded by RC is

executed. The command line preceded by RC is just the converse

of the command line preceded by WC. In this case, file transfer

takes place from the CYBER to the NOVA/ECLIPSE. Again, the

command sequence is terminated by the keyword END.

Finally, single control characters are used outside of the

command sequence. The control character C, for example,

indicates that the remainder of the line is a comment that the

interpreter may ignore. (There is one other single control

character -- I -- used elsewhere in the action file. It

indicates that up to two responses of the connected system may

follow. Even if no responses are expected nor entered, the

38

control character I must be in the action file as the

interpreter always looks for it.)

Development of MONITOR

Program MONITOR is the largest software partition utilized

in interfacing the NOVA/ECLIPSE computers to other connected

computer systems. MONITOR serves as the basic command string

interpreter of the action files discussed previously, and acts

as the executive to control functional interactions of all

subroutines and any tasks. There are two tasks that execute

asynchronously within MONITOR. The main task is the

interpreter/executive program MONITOR, and the other task is

called SYSIN, for system input. This latter task continually

monitors and seeks any input from the connected system. In

fact, SYSIN is an extension to TTERMOP, doing all the same

functions of TTERMOP, plus others to be developed below.

The MONITOR Task. In the narrowest focus, the program

MONITOR reads the action file selected by a user, and, upon

matching the desired command name and related command sequence,

sends the command sequence lines to the connected computer

system or to the NOVA/ECLIPSE RDOS. In order to interpret the

action file, the file itself has to be read into storage. The

simplest method to accomplish this is to use FORTRAN read

statemcnts that store the file in a one-dimensional array, one

line at a time. As the action files are exclusively ASCII, the

A format specification is used in the READ statements. As each

line is read into the array, the keywords or control characters

39

are examined to determine further actions. Prior to taking any

of these further actions, the arguments must be resolved.

A typical command instruction within the command language

may include no argurments or up to four arguments. Argument

substitution then allows the user flexibility in selecting

arguments to be used with any particular action file. The

method of argument substitution developed is simple and prouceds

as follows. A command string consists of a command name

optionally followed by arguments. Each argument of a command

string is entered sequentially after the command instruction

name. The command and arguments are separated either by commas

or blanks, where two blanks or two commas together indicate a

null argument. Order must be fixed, and is determined by the

action file. An easy way to identify the arguments in the

action file is to number them sequentially, using the sharpsign

as an indicator. For example, argument two is denoted 2 and

argument x is denoted #x. Not all command sequence instructions

within the action file contain argument parameters. In fact,

there are certain sequences that may be checked, while the

others may be ignored for this purpose. The interpreter,

therefore, checks all command sequence instructions that are

preceded by the control character set in which the second

character is either an "S" or a "C" In these instances, the

process of argument substitution is four-fold. First of all,

the array containing the command sequence line is checked to

determine if any sharpsigns exist. If not, the argument

substitution process ceases. If a sharpsign exists, the array

40

is collapsed about the sharpsign, i.e., the sharpsign and its

corresponding number are removed from the array. Next, in the

same location where the sharpsign and number were, the array is

expanded to the size of the argument entered by the user. Once

this step is complete, spaces exist where the sharpsign and

number used to be. In the last step of tLe substitution

procedure, these spaces are replaced by the argument. This

four-fold process is then repeated until all argument

placeholders in, any particular command sequence line have been

substituted with actual arguments. Several error checking

procedures are in effect prior to and throughout this process.

If an argument is too long (maximum length 40 characters) or if

arguments supplied by the user Jo not match exactly the

arguments expected by the action file, error messages are

provided to the user.

Once arguments are resolved in any command sequence

instruction, the control characters dictate what action tho

interpreter is to take next. Each action is supported by one or

more subroutines that program MONITOR calls into execution. For

example, in the command PUT, one of the command sequence

instructions is preceded by the control character set WS. Upon

resolving the arguments in this instruction, the program MONITOR

calls FORTRAN subroutine WRITSYSTM to implement the action of

writing the instruction to the connected system. WRITSYSTM is

really just a transition subroutine that smooths the transfer

from the FORTRAN program MONITOR to the assembly language

program WRSYS, a subroutine called by WRITSYSTM. WRSYS actually

41

do(t . vo h1 o t r;i ' ri itt in t ht c or1,,tid instruction to tiE

con I) t Ctd "y !;tcn, . The t ransfer is made character by character.

Several other subroutines parallel these two. For a control

charac ter F(t of RV' (read from the I ocal system and vr ite a

carriage return to the connected system), the interpreter calIs

FORTRAh subrout ine R1EATLI,.:RITS, which transitions to the assembly

laniguage' rout ine RDAWP. For a contrcl character set of WL

(write to the loc :l terTmin, al), program MONITOR calls FORTRAN

subroutine WRIILOCAL, which does not call any other routines.

The contrul character set RR (ready the NOVA/ECLIPSE for a

subsequent read that will take place), causes the interpreter to

call FORTFAN subroutine READYREAD. aEADYREAD simply creates a

file to be used as temporary storage for the information that

will subsequently be copied from the connected system. Two

oter control character sets are similar, though converses of

each other. The set WC (write a copy of a NOVA/ECLIPSE disk

file to the connected system) prompts program MONITOR to call

FORTRAN subroutine SENDFILE. SENDFILE serves primarily as a

transition routine and, secondarily, as a mini-executive of the

actions necessary for such a transfer. SENDFILE calls assembly

language subroutines EXCLI and GETFILE. Program EXCLI is called

to execute the RDOS CLI on level two by swapping the CLI in and

the program EXCLI (or effectively MONITOR) out of memory.

During the swap, the instruction contained in the

one-dimensional action file array (called IACTFILE) is sent to

the RDOS. Upon return from the swap, program GETFILE is called.

This program actually gets the disk file that is to be

42

transmitted and outputs the entire contents of the file

character by character to the connected system. The converse

of the character set WC is RC (read a copy of a connected system

file and store on the NOVA/ECLIPSE). The interpretcr responds

to the control character set RC oy calling FORTRAN subroutine

RECEVFIF, '. Like SENDFILE, RECFEVF1LE also calls assembly

language routine EXCLI in order to send instructions to the

RDOS. Because of the structure of SYSIN, described below, the

information from the connected system has already been received

and stored in a temporary file. Thus, execution of EXCLI at

this time sinply transfers the input file from this temporary

disk storage to the file location input by the user as an

argument.

The remaining programs called by MONITOR are more a part of

its executive functions, rather than interpretive functions.

Two programs that blur this distinction somewhat are GETRSPS

and CNVPT. FORTRAN program GETRSPS is called by MONITOR shortly

after initiation, yet subsequent to user selection of the

desired action file. This program reads the action file

selected, looking for control character I (mentioned earlier).

Entries in the action file after this character are initial

responses (up to two) that may be expected from the connected

system during interconnection. For example, in the CYBER action

file the entry in the line after control character I is

"COMMAND-,.." . The comma serves as a separator, indicating two

possible responses that may be expected from the CYBER during

interconnection with the NOVA/ECLIPSE. The first response is

43

"COMMAND-'' and the second response is . GETRSPS simply

gets these responses, if any, from the selected action file and

stores them in arrays. Upon return from GETRSPS, MONITOR

immediately calls assembly language routine CNVRT. The sole

function of CNVRT is to convert the FORTRAN array storage of

GETRSPS into assembly language storage. For example, the ASCII

character "A" is stored in the FORTRAN array as two bytes in one

16 bit word, of which the octal representation is <101><40>.

The same character is stored in assembly language as <0><101>.

The difference between these two stems from the difference

between the FORTRAN A format specification used in reading in

the array and the assembly language construction that docs not

use special formating. In essence, the FORTRAN read statement

puts a single character into one word, the left byte the actual

ASCII character code and the right byte a space. Assembly

language looks at bytes only. Thus, a 16 bit word will have a

null in the left byte and the actual ASCII representation in the

right byte. CNVRT then stores the needed character

representation of the responses and their size in buffers that

are used by subsequent programs to assist the interpreter in

detecting responses from the connected system and determining

whether or not they're expected.

Those programs that are purely executive are the programs

BCIN, PROMPT, REVERT, and TOTERM. Each of these carries out a

specific function that needs to be accomplished to help

integrate the various modules of MONITOR into a working whole.

BGIN simply opens channels to the local NOVA/ECLIPSE terminal

44

input and output device codes -- $TT1 and STTO respectively.

PROMPT provides prompt character ">" to the user's terminal

whenever called. The program REVERT is selected by the user as

an option in lieu of a command string. By entering the string

1-L" ,)the user instructs the interpreter to return to the RDOS

CLI. REVERT simply executes the return to the CLI. The user

also has the option of entering the string "^T" . This string

instructs the interpreter to go to the terminal operation only

mode. In essence, the program TTERMOP is called, although as a

subroutine it is slightly modified and renamed TERMOP. MONITOR

actually calls TOTERM, which first removes the previously

defined device codes $TTOl and $TTII, and then calls TERMOP.

Appendix B contains a flowchart description of program MONITOR

and its various modules.

The SYSIN Tasy. As each of the interpretive and executive

functions of MOITO, are being executed, a separate task is also

called into exccution by MONITOR. Using a DGC FORTRAN version

task call , program SYSIN is activated at the beginning of

program MONITOR. SYSIN is given a priority of one, while

MONITOR is automatically assigned a priority of zero. In

keeping with the RDOS conventions, MONITOR has the higher

priority.

SYSIN has four basic actions to accomplish. First, when

SYSIN is initially called, it identifies and defines the needed

device codes $TTOl and $TTI1. The remaining three actions occur

as the processor schedules the task itself. The first action

taken by SYSIN is to continually check the input buffer that may

45

havc been receiving da ta from the connected system. Any data

received is put into another buffer, called MATBUFR, for

matching purposes. Next, the program SYSIN compares the data

put into the match buffer with the expected responses from the

connected system. (These responses were stored in retrievable

locations by program CNVRT.) If the responses are as expected,

the match buffer is cleared and new information is entered into

it. If the responses are not expected, SYSIN displays thert on

the NOVA terminal for the user to see. Finally, SYSIN always

checks to see if a temporary disk storage file has been created

by the program READYREAD. If no such file is created, then

SYSIN does nothing extra and returns to repeat the other

actions. If the file has been created, however, then SYSIN

writes the information in the match buffer into the temporary

disk file as well. Thus, SYSIN creates the device interrupt

routines for device codes/ports $TTOl and $TTI1, monitors the

input buffer, detects and appropriately displays responses from

the connected system, and writes to a temporary disk file when

such a file exists. Flowcharts that describe SYSIN are also

contained in Appendix B.

Handshakinp Conventions. Because of peculiarities in the

RDOS with regard to its scheduling of user created tasks and

because of the relatively slow response from the connected

computer system (currently operating at 300 baud), several

handshaking conventions available via task calls have been

utilized throughout the program MONITOR. Basically, whenever an

instruction has been sent to the connected computer system by

46

any routine or subroutine of the command language, the main task

MONITOR is suspended. The main task remains suspended until the

secondary task SYSlN readies the MONITOR. SYSIN readies MONITOR

after any response from the connected system or after a built-in

time delay has been exceeded. The asynchronous nature of the

two tasks is affected by this implementation, but only after a

suspension of the main task. Both tasks remain independent and

asynchronous when both are active. The handshaking permits the

user to control events through the interpreter, as MONITOR is

the task that the user communicates with. This handshaking and

the relationship of all programs that constitute the command

language are presented graphically in Figure 3. Each assembly

language program depicted is given the file name extension .SR,

while each FORTRAN program is given the file name extension .FR.

All the programs shown in the figure are loaded together and

executed under the file name MONITOR.SV. The mechanics of the

loading and execution are briefly discussed in Appendix C.

47

Sys IN.S sil MONITOR. FR

READYREAD.FR - PROMPT.SR

IIRITLOCAL.FR BGIN.SR

PD IM S ,READLIRITS.FR ' G G ET iSPS FR 7__

WRY.RWRITSYSTII. FZCNVRT. SI~

R1EVERT.SR TOTER1. SR

CLTERMPSR

- --- -- indicates task interaction
indicates subroutine call and return
indicates subroutine call and no return

Fig 3. Program MONITOR Structure Chart

48

IV. Validation

The general purpose command language was constructed in a

modular manner from the top down. The initial program devloped

and tested was the main task MONITOR. Until other needed

modules were completely developed, stubs were created and used

to interact with the main task. Tasking itself was not needed

and was not introduced until the software effort was fifty

percent complete. The remainder of this chapter discuss the

testing Pnd validation efforts with respect to the - and

language developmcnt and construction. The first section

discusses efforts during the development, while uhe second

section diccusses efforts once a workable product was p duceC.

During Development

Every effort was made during development to completely test

and debug modules as they were created and modified. Most of

the modules were short and uncomplicated, enabling repeated

assembling and loading without extensive time delays. Those

modules that were more unwieldly, such as SYSIN and MONITOR,

were developed and tested in stages. A tool frequently used to

great advantage was the DGC RDOS Symbolic Debugger. The

debugger saved many manhours in tracking down sporadically

appearing errors. Perhaps the main feature of the debugger that

permitted this savings was the ability to set brcakpoints and

execute up to these breakpoints.

49

Many trial modules were created in the project's beginning

to test system calls, FORTRAN calls, and subroutine

interactions. A significant amount of time was spent trying to

integrate FORTRAN programs with assembly language programs. In

this regard, several small scale FORTRAN programs and their

called FORTRAN subroutines were created and compiled. The

NOVA/ECLIPSE RDOS requires each distinct routine or subroutine

to be separately compiled or assembled. Because of this,

compiled FORTRAN programs produce an optional assembly language

file. These files were examined repeatedly to determine the

exact relationship between FORTRAN and assembly language

programs. Essentially, the assembly language routines require

calls to specific FORTRAN runtime library routines at the

program beginning and end. These library routines initialize

variables and organize stacks automatically, thereby enabling

communication and interaction from a FORTRAN module to an

assembly language module. Another complication was establishing

the FORTRAN address locations for compiler generated and

temporary variables within the assembly language routines.

This is always accomplished at the end of an assembly language

subroutine by setting the variables used in the assembly

language program to FORTRAN address locations expected by the

FORTRAN main module. FORTRAN calls to RDOS routines and system

calls within assembly language routines also required repeated

examination and trials to determine their effects. Once

familiar, these types of calls proved quite powerful and

convenient. It should be noted, however, that complications can

50

and did arise when mixing user defined operations that executed

in user space with system calls that execute.d in system space.

In fact, system calls cannot be used at all in user defined

interrupt service routines. Finally, extra code was used

regularly to provide messages to the user terminal regarding

decision points encountered and overcome. For example, the

one-diment ion 1 array IACTFILE that contained the command

sequence instruction from the action file was repeatedly

displayed on the terminal screen throughout the argument

substitution piocess. This provided cliar and immediate

feedback as to the program's progress and correctness during

execution.

No computer link was available for testing the interfacing

programs until late in the development, nor was it needed until

late in the development. Initially, therefore, a simple line

printer was connected to the input and output ports of the

NOVA/ECLIPSE. Early programs were tested by writing to this

printer and ignoring inputs (since there were none). About

halfway through the development, the printer was replaced by a

separate terminal. Later versions of the interfacing programs

provided for writing to this terminal and reading from this

terminal. Thus, two-way communication was established. The

program TTERMOP was essentially proofed in this testing

configuration, since computer to computer dialog for this

program was easily simulated. Interrupts were generated and

serviced, and responses were user-simulqted as if the terminal

that was connected to the access ports of the NOVA/ECLIPSE was

51

indeed th¢ CYBER computer. During this entire period of time,

no major attempt was made to streamline or enhance coded

procedures. The first goal was to make the program execute

successfully.

After Development

Once the programs were complete and individually tested in

the terminal to terminal environment, the emphasis shifted to

integrated program validation. All independent aspects of the

individual modules were correctly compiled, assembled, and

loaded together without any explicit errors discerned by the

RDOS. By this same time, all stubs had been replaced by working

routines and the intial refinements had been made. At this same

time, the telephone link to the local CDC CYBER computer system

was installed. Initial attempts to interconnect the

NOVA/ECLIPSE computers to the CYBER system failed due to pin

mismatches in the RS-232 connectors. Once these pin connections

were changed, computer interconnection was achieved. Program

TTERMOP worked well almost immediately, only requiring

modifications that eliminated sections of code that simulated

modem functions for operation in the terminal to terminal mode.

Program MONITOR had more severe problems, revolving around

handshaking considerations for the multiple tasks in the command

language interpreter. These problems were most difficult to

isolate for two reasons. First, the debugger was limited to

setting breakpoints only within a single task. That is, if

breakpoints were set in each task, the debugger would halt at

52

the first breakpoint encountered in either task and would

remain in that task. The other task was not visible through

the debugger in this instance. The second reason quickly

overshadowed the first reason. The debugger, and in fact the

entire MONITOR program would not execute at all once the entire

program was loaded together. The debugger and all other

programs loaded without error, but a FORTRAN runtime error

indicating a stack overflow resulted whenever an attempt was

made to execute the complete program. It appears that resident

memory is too small to handle the execution of the integrated

program with the debugger. Nonetheless, the handshaking

problems were corrected by using task calls to appropriately

suspend and ready the main task, which allowed the secondary

task to seize control of the processor as desired.

Repeated failure of the program SYSIN to suppress displays

of expected responses from the CYBER computer system lead to the

discovery of another problem. The CYBER terminal sends out

sequences of null characters at various times. These nulls are

accepted in the input buffer, but are not visible to the

terminal user. Even so, they cause the matching routine of

SYSIN to give erroneous results. The solution is simply to

discard all nulls received by the NOVA/ECLIPSE. This corrected

the problem of detecting and suppressing expected responses from

the connected CYBER system.

Early attempts to execute commands of the developed command

language were intermittently successful. Numerous minor changes

were made to the action files to correct command sequences,

53

syntax, and spacing. To save some time and preclude potential

problems, the interpreter was modified so as to send only the

exact number of characters comprising a command instruction.

Prior to this modification, an entire record line of 80

characters was sent, even if the command string was less than 80

characters. As these changes were made, the program became

progressively more reliable.

File transfers have been accomplished and the files have

been checked for completeness and uniformity. Files are

transferred as expected with one exception. Files received

from the CDC CYBER system have an extra carriage return attached

at the file beginning and end. These can easily be removed

using the text editor. Also, there were occassions when a file

would be transmitted to the CYBER system from the NOVA/ECLIPSE,

but upon completion of the transmission, the NOVA computer would

hang up about location 12 (octal). The problem was

intermittent, and could not always be duplicated. Nevertheless,

files with less than 20 bytes of information and files with

upwards of 35,000 bytes of information have been successfully

and repeatedly transferred both ways without program failure.

54

V. Conclusions and l. co.! y.at ions

A general purpose command language for computer to computer

dialog has been designed, develop.ed, and implemented. The

conmand language, called MO!ITOR, meets the basic contraints

that were established when the problem was defined. The

program is flexible, which allows tho same software to be used

for more than one connect ed covlputer syst(1 to the NOVA/ECLIPSE

computers. However, until another system other than the CDC

CYBER is actually interconnected and used, the degree of

flexibility is speculativu and subjective. The command

language is general, to the degree that it seems reasonable to

be able to implement MONITOt on another sy stem ether than the

NOVA/ECLIPSE, with some modifications. The assembly language

routines must be fitted to the assembler to be used, and the

interaction between the FORTRAN and the assembly language

routines may require changes. Only a test will demonstrate the

real generality of this programming. The concept and overall

structure, however, seem most feasible. The interpreter is the

basic entity and should remain static in most cases. The action

files are system dependent, and they are dynamic by design.

Thus, the remainder of this chapter will cover the conclusions

and recommentations regarding this project.

55

conclusions

The general purpose command language works well overall.

There are a variety of available commands and all have been

successfully implemented. ASCII files have been transferred to

and from the NOVA/ECLIPSE repeatedly, files have been printed

on the CYBER printer, and files have been punched on the CYBER

punch.

The command language is easy to use, simply defined, and

brief. There are just a few commands, although more can be

added or deleted. With these limited commands, much work can be

accomplished. The user need enter a limited number of words

only, and is relieved of the tedium of repeated entries. Fewer

commands encourage use; simple commands encourage use.

The command language is not as universal as conceivable.

Commands are structured to fit the environment in which they

are to be used, limiting their universality somewhat. Commands

are restricted to size, the number of arguments possible, and

the order and position of arguments are fixed.

The program is relatively slow executing. Much of this is

due to the handshaking that has been used.

The program is not as efficient as it could be with some

design changes. The handshaking has circumvented the

independence and asynchronization of some of the multitasking

features of the operating system. Swapping takes place although

some other means to avoid swapping may exist.

56

Finally, the programs are ;tructured modularly, lending to

ease of irodification, readability, and undertanding.

Reco rrrendnt. e ns

The following recommendations are presented to indica

areas in which the general pupose command language co Structed

may be improved and enhanced. Some of the eccnendat ions

follow logically from the conclusions yrescnted above. Other

recommendations aye just observa ns and sug'gestions that have

accumulated over the tin -of the project. Each recor:mendation

is presented in th ope that it will either lead to fol low.-oil

project oy tunities or a better understanding of the project

The current strcture and content of the general purpose

language is not necessarily the most efficient nor the most

effective. There are several assembly language routines that

might readily be convertible to FORTRAN, and several features

that have been implemented might be simplified. Logical

candidates for simplification are the routines EXCLI and SYSIN.

There may be a more straightforward way to interact with the

RDOS from the command language itself, for example.

Much more flexibility could be built into the ccinaind

language with respect to the functioning of commands. For

example, the commands need not be limited to simple command

strings. Perhaps global and local switches could be introduced

to increase the power of the command instructions themselves.

Further, argument defaults and optional arguments would

57

crt iprove the powr of t l uage.

The currenit software has no convenient means to internally

dapt to connect ed systerms that are ful-duplex. All the source

code has been writ ten with a hal f-duplex link in mind. An

internal flag or switch to appropriately seloct code for either

half-duplex or full-duplx operation would certainly increase

the universality of the software.

Current implenentation of the MONITOR command language is

limited to ASCI I fil trans fcrs on] I . Expanding the capability

to handle binary files would be most useful, especially in

support of the digital signal processing demands.

With the language imp) cment ed as it is, access is now

avai lable to onother computer syste :i for dialog from the

IVOVA/ECLIPSE. Devi ! ing a method of access to the NOVA/ECLIPSE

from the other computer syqtem would open new avenues of dialog

between computers.

More sophisti cated command languages of ten implement

pipel ining , i. e . , stringing command instructicns sequentially

for sequential execution. Implmenting pipelining within

MONITOR would provide a terse language of greater power and

convenience.

MONITOR lends itself to coding in a high-level structuied

language. Several advantages may be gained by redesiigning

MONITOR in PASCAL, for example. Data structure and file

structure manipulations might be greatly simplified and

facilitate greater creativity in developing command sequences.

58

o1L r l 1'J' Y

1. Abrams, V., R. P. Blanc, and I. W. Cotton. _Co ptrr
NeutA,'trh : ''_' T s_L. i. O ffr C for a Tt rors1 (Revised
Edition). Jt3100-SC. I,}E Coimputtr Society, October 1975.

2. Anderson, G. A. and D. E. Jensen. "Computor
Interconpection Structures: Ta>onomy, Characleristics, and

Exar.:p] es ," 'cjirnj_ Su rvfys, 7: 1 97-213 (December 1975).

3. B ole , M., W. BDov'ian , D. Fisher, and P. Gruber.
Na-N",achi _no _InterfvGc/InlclJ J]; a t Te: v:in!;:1 S;t__y Rano,)rtL

DT1C AD-E027 395L,. ComEand and Control lechnical Centcr,
Washington, D.C.: 30 January 1978.

4. Carter, HEnjanin F., 1II. A Sr ci__al P,- _oi e CF Stt to

A r i_:t er fac. MS Thes is. Ames, Iowa: Iowa State
University, 1975.

5. Martin, J. Des in f Manl Computer Div ecues. Englewood
Cliffs: Prvntice-IHall, Inc., 1973.

6. McIlroy, M. D., E. N. Pinson, and B. A. Tague. "UNIX

Time-Sharing yste m: Forward," The DelI S\'utem Technical
Journal, 57 (6) Part II: 1899-1904 (July-August 1978).

7. Net eD _rl tisi Dvstem/Batch Envirop-:ent (OS/SE) er.. Y _n
1 Pf1.r c ._r ra]. 60493800, Revision i. Control Data

Corporation (CDC) Computer Systems, St. Paul, Minnesota,

197 9.

8. Ravcnscroft, Donald L. Electrical L inecrie _ic_tal

De s Jrn Laborato y n i ct i on Ntvor. MS Thesis.
Wright-Patterbon AYB, Ohio: Air Force Institute of
Technology, December 1978.

9. Real.T -im.e li L ofrJtinj Systec (RDOS) R e f eren c e _a 3na1.
093-000075-08. Data General Corporation (DGC), Westboro,
Massachusetts , 1979.

10. Rinder, R. "The Input/Output Architecture of
Minicomputers," Datamation, 16: 119-124 (May 1970).

11. Ritchie, D. M. and K. Thompson. "The UNIX Time-Sharing
System," The 1ell System Technical Journal, 57 (6) lart II:
1905-1929 (July-August 1978).

12. Russo, P. M. "Interprocessor Communication for
Multi-Microcomputer Systems," Computer, 10: 67-76 (April
1977).

59

Appendix A

MON ITOR lscr ?Niiou-a

60

Con t: n11t S

Page

1. Introduction 62

2. flow to Access/Use MONITOR 64

3. Original Cormands Available 68

PUT 68
GET 68
SPRINT 68
SPUNC. 68
DELLTE 69
FILES 69
PFILES 69
LOGON 69
LOGOFF.. 69
LPRINT 69
LPUNCII 69
SBATCI 69
IBATCH. 70

4. Error Handling 71

Connected Computer System Errors 71
NOVA/ECLJPSL RDOS Errors 71
MONITOR Executive Function Errors 72
MONITOR Interpreter Errors 73

5. CYBER Action File Design 75

6. Summary 80

61

1. Introduction

Program MONITOR is a general purpose command language that

may be used for computer to computer dialog. The MONITOR

software resides within the Data General Corporation (DCC)

NOVA/ECLIPSE computer system. By calling upon particularly

designed action files, MONITOR enables a user to

intercommunicate with various computer systems that are linked

to the NOVA/ECLIPSE via a standard RS-232 modem connection. The

input/output ports for the NOVA/ECLIPSE are called device codes

$TTI1 and $TTO1, respectively. These ports are on the NOVA 2/10

computer only. lowever, since the NOVA 2/10 and ECLIPSE S/250

share a ten megabyte disk via the DGC Real-Time Disk Operating

System (RDOS), access to the ECLIPSE may also be gained through

the NOVA by appropriate operating system instructions.

The user desiring to utilize MONITOR may use a NOVA video

display terminal within the Air Force Institute of Technology

(AFIT) Electrical Engineering department's Digital Signal

Processing Laboratory. This user manual will describe the

access procedures, the commands available for use, the errors

that may be encountered, and the particular design of an accion

file.

Though the command language ONITOR was designed to be used

with different connected computer systems, only the locally

accessible Control Data Corporation (CDC) CYBER computer system

has actually been interconnected. Thus, all examples and

specifics will refer to this interconnection throughout the

62

manua 1. A general extension to other computer systems is

relatively straightforx.ard.

63

2. Bow to AccesUse MONITOR

The executable software package that enables computer to

computer dialog via the NOVA/ECLIPSE computers is the binary

save file MONITOR.SV. This file is composed of several FORTRAN

language and assembly language source routines thit are loaded

together to form MONITOR.SV. The main partition of the entire

software package is the FORTRAN source program MONITOR.FR, which

forms the basic command language interpreter and executive for

the command language. (Unless otherwise stated hereafter, the

term MONITOR will refer to the binary save file MONITOR.SV.)

The software for MONITOR resides upon the NOVA/ECLIPSE

disk, specifically the NOVA disk platter. The directory under

which MONITOR is stored is named DIALOG. Therefore, to access

MONITOR, the user must enter the directory DIALOG. The

appropriate command by which to enter the directory from any

other directory is:

DIR DPOF:DIALOG

Once the user has entered the directory DIALOG, the user is

reacy to execute the command language. The simple entry

MONITOR

will call the binary save file MONITOR.SV into execution. The

user will next see the following display upon the terminal

screen:

64

The M(ONITOUR pro,,ranm you have vn ted provides

intercomi.unication betwcen the NOVA/FICLIPSIL colAputer

system and your choice of another system.

Please enter the digit oppo!;ite the action file

you desire to use:

1 -- CDC CYBER
2 -- DEC 10
3 -- VAX 11/780

4 -- Your own

The character '>" is a prompt that signals the user to make an

entry. In the above instance, an entry of 1 would select the

CDC CYLER action file, a 2 the DEC 10 action file, a 3 the VAX

11/780 action file, and a 4 an action file developed and coded

by the user. (Originally, only the CDC CYBER action file was

developed. Thus, the other action files existed, but had no

useful entries. Effectively, these other files contained no

commands and always returned an error condition if commands were

attempted from them.) Entry of a number other than those

indicated causes an error message as follows:

You have entered an illegal number. Try again!
>

The user is again at the initial starting point.

Once the user has entered a selected integer, such as 1,

the following type of message is displayed:

65

You have selected the CYBER.
Thank you. Please enter a command.

At this point, all prelimivary initializations of the program

have taken place. The user is now ready to enter a specific

conmand from the avail able comtiahds contained within the

selected action file, or two additional commands not contained

within the action file.

The two commands not contained within any action file are a

command that reverts the user back to the RDOS Command Language

Interpreter (CLI) and a command that calls the terminal only

mode of operation -- program TERIIOP -- into execut iori. The two

cormands are:

-L - revert to local CLI

^T - change to terminal only mode

The next display a user sees upon entry of ^L is:

You have returned to the local CLI mode.

R

The "R" is the RDOS CLI prompt. The next display a user sees

upon entry of -T is:

You have entered into the terminal only mode. Proceed!

The user's terminal is now connected as a transparent terinal

to the computer system selected, such as the CYBER. To exit

this mode and return to the MONITOR mode requires the user to

enter an up-arrow ", which returns the user to the RDOS CLI,

and then to enter MONITOR and repeat the sequences described

above.

66

All other permissible entries are contained in the action

file. To see a complete list of these commands, see the action

file itself. The next chapter describes the original commands

developed and implemented within the CDC CYBER action file. As

action files are designed to change, however, the user must look

at the current action file to find the current status of

commands.

67

3. POrili - C o rn (I s A v n I ahl- e

The original commands developed specif ically for the CDC

CYBER action file aro listed and briefly described below. These

commands (names) may be used in other action files, provided

command sequences contained in the action files are

appropriately designed and controlled. See Chapter 5 for a

discussion of the design and structure- of a particular action

file.

PUT,LFN, SFN, ID, SFPASSWRD

This command selects a local file name (LFN) froi the
NOVA/ECI]PSE disk and transfers the file to the connected
computer system. The transferred file is stored
permanently under a system file name (SFN) with an
identification (ID) a~id system file password (SI'ASSWRD)
supplied by the user.

C-ET,SEN, ID,SFPASSWRD, LFN

This coamnand selects a SFN stored on the connected computer
system and transfers the file to the NOVA/ECLIPSE disk with
the LFN input. The user supplies the ID and SFPASSWRD for
the SFN.

SPRINT,SFN, SFPASSWRD

This command selects the SFN with appropriate SFPASSWRD on
the connected computer system and prints the file out on
the connected system printer.

SPUNCH, SFN, SFPASSWRD

This command selects the SFN with appropriate SFPASSWRD on
the connected computer system and punches the file out in
Hollerith code on the system card punch.

68

DELETE, SFN, SFPASSWRD

This command deletes/purges the permanent file on the
connected computer system with the SFN and SFPASSWRD input,

FILES

This command causes the connected system to display local

files in use.

PFILES

This command causes the connected system to display the

permanent files in use for the ID supplied.

LOGON,USER ID,USER PASSWRD

This command initiates access to the connected system. The

user must supply the specific ID and protected password
(USER PASSWRD).

LOGOFF

This cohmand terminates access to the connected system.

LPRINT, LFN

This command selects the N on tue NOVA/ECLIPSE and prints
the file out on the connected system printer.

LPUNCH , LFN

This command selects the LFN on the NOVA/ECLIPSE and

punches the file out in Hollerith cede on the connected

system card punch.

SBATCII,SFN,SFPASSWRD,DISPOSITION,TERMINAL ID

This command selects the SFN with appropriate SFPASSWRD for

execution on the connected system in the batch mode. The

output of the file (DISPOSITION) and location (TERMINAL ID)

are supplied by the user.

69

LBATCH ,LFN ,DISPOSIT ION, TERMI NAL ID

This command selects the LFN on the NOVA/ECLIPSE for
execution on the connected system in the batch mode. The
DISPOSITION and TERMINAL ID are supplied by the user.

70

4. Fror i!_ar icl_iuIW

There are four general types of errorn that may occur in

execution of the program MONITOR. There are (a) interpreter

errors, (b) executive function errors, (c) NOVA/ECLIPSE RDOS

errors, and (d) connected computer system errors. The first two

types are errors that arise within the MONITOR software itself.

NOVA/ECLIPSE RDOS errors occur whenever the RDOS ge:ierates an

error condition, and the last type of errors results from

operating system error conditions generated by the connected

computer system.

Connected Co-jpt er S'ster Errors. NONITOK was designed to

display error conditio.s generated by the connected computer

system to the user. Each action file reserves a location after

the control charac. er "I" for up to two expected responses from

the connected system. Any response not matching these expected

responses is displayed to the user. Thus, any erior conditions

of the connected computer system are simply passed to the user

for action. Most of these error conditions are non-fatal and

do nc' cause NONITOR to fail. However, unexpected results may

arise if error conditions are encountered.

NOVAJ EIIPE KDOS Errors. MONITOR executes within the

direct control of the RDOS. Error conditions generated by the

RDOS may be displayed to the user or cause the RDOS to cease

execution of the MONITOR program. In the worst case, RDOS

errors will be severe enough to cause a NOVA/IECLI PSE syster:

"panic." In this case, the computer halts and displays the

71

error condit ion and accumulator values. The RDOS Rcfervnce

KaEual (Ref 9:F--1 - F-2) details these circumstances. In a less

severe, but fatal error condition, the PDOS will halt execution

without a "panic." Generally, a "Control A" input will restore

the CLI to the user. On other occasion,, "Control A" will have

no effect. In these circumstances, the user must reset the

conpu tr and bring it up as if it had been powered down. In the

best case, the .DOS error cendition will cause an automatic

return to the RDUS CLI and the error condition will be displayed

to the user. In any case, RDOS error conditions arc generally

symptomatic of software errors in the executing program. All

such error conditions should be examined and tracked in order to

correct apparent errors in the source code.

MON ITOR R :Lcut ive Fun tion Errors. Executive function

errors are closely related to NOVA/ECLIPSE errors. In fact,

these errors are produced by the RDOS, but are generally

anticipated. Thus, such errors are caught by the MONITOR

program and serviced automatically, or a specific error

condition causes a software halt of the program. For example,

whenever a FORTRAN call to open a file is executed, a potential

error may occur that indicates that the file is already open or

that such a file doesn't exist. MONITOR handles all of these

types of errors by executing a STOP and displaying the cause of

the stop. Specifically, if the CYBER action file would not open

properly when a call was issued to open it, the following

message would be displayed for the user:

72

ST(;' CAP'T NOT OINED PIOPIELLY

Other executive function errors are handled identically. In

each instance, the cause must be i solated before program MONI O,

can he eyt cuted successfully.

.MOITTO lot ypMetyr yrr.;. The interpreter errors are

those that the ot erpretor ,ON ITOIR.FR anticipates and handles.

These errors are handled entircly within the MONITOR softwaie.

Whenever such as error occurs, the user is notified via

display, and a prompt is given to indicate that a connected

input is needed. Each of the anticipated error conditions and

their reasons are provided below:

INVALID CONMAND -- EMPTY S'INlEG

Indicates that a comr:and string is comprised cf all blanks
or nulls. (Entering a carriage return alone will result in

this error condition.)

SYNTAX ENRRCR
FIRST OR LAST 1ITERAL IFVALID SEPARATOR

Indicates a command string began with a comma and/er ended
with a convr'a. (Only commas and spaces are separators.
However, comas cannot start or end a comomand string.
Spaces are ignore except betwu'en otiher iiterais. Thus, an
entry of a co~mnand string that ends with a co:a and then a
space will result in this error condition. NOTE: Internal
null argunt s within a command string arc allowed. For
example,

PUT,,TMIS , THERE.

will be accepted as a valid string with the command PUT and
four argi:rents.)

INVALID COMMA N I - T(OO FEW CUNARACTERS

Indicates a corirand string with just one character. Again,
spaces are ignored except between other literals.

73

Ii r ,, ItMcT L S s
i) , 1 uppli. cd with a

I A 1 1 '1 j C(: I

FaC Ih cur :,;I -J : rd r, .i y f" up to 30 characrtrr
lon,, ITh %- .T i.I, d vor i ur nt ent ered wa s 31

or in r c : r I t (- 1 •

INV/i, D CU 'AN;D

CO,MANID 1,1t' j T (JU.
OR SUITP1171D NOT LQUAL. P. lOUT)E

Indicates; one of two po,,,ibilities: (1) there was not a
match of the coi.r.iand cnte rcd with ay co mninnd contained
within the acticn f i e . (could be a Tr;isspellig .) (2) the
action fijl commiid required x a-,unents and either less
than x or maorc than x arguments wcrye input. (The number of
argu uc i L T1t be exactly as specified within the action
file.)

CO.,NNA.D AP OPT
UNEXPECTED 9 NU.RY IN ACTION Y11.E

Indicates an undefined or nonexistent control character set
within a c oim,-nit d sequence. (The action file must be
corrcc t ed.)

74

5. CYB.R Act i on Fi.le Des] ij

The basic s tructural desigLi of any action file is detailed

in the main body of this report. This chapter describes the

overall design of action files and details the design of the

specific CYBER action file developed and implemented. The

listing of the action file itself is in Appendix D.

Essentially, the interpreter initially looks for the first

character or first two characters of each line in the action

file. Depending upon these characters, action is taken to read

the next line, stop reading the file, or execute a line just

read. Thus, only specific characters are expected in the first

two columns of the action file. Any other characters are simply

ignored. If no recognizable characters or no characters at all

are in columns one or two, the interpreter cannot find any

useful iuform ation and aborts reading. This feature does allow,

however, co-mment s to be inserted anywhere. The character "C",

for exariple, is not expected by the interpreter. Thus, all

lines be'inning with "C" are ignored and serve as comment lines.

Any other unexpected character, such as "A", could also have

been used, but "C" was arbitrarily chosen to match with FORTRAN

comment lines.

Spacing is predetermined by the expectation of the

interpreter as well. The exact spacing established is

arbitrary, but once established, it must be followed explicitly.

Thus, columns one and two are reserved for control characters.

Anything may be in the rest of a comment line. Lines that begin

75

with "EN) . and "FINISl." may haivc comvients after them, as the

interpreter will simply read the first character and ignore the

remainder of the line. Each command sequence starts with a

period, followed by the nai:'e of a particular action file. Thus,

for the CDC CYBER, each sequence starts with ".CACT" . This

mname is followed by a specific com~mand, as indicated in Chapter

3. The commVand is followed by the exact number of arguments

required in the form of a shorpsign and an accompanying integer.

Argument three is 13, for example. Each of these entries must

be separated (arbitrarily) by commas. As mentioned in the body

of this report, this header line is follewed by executable

statements preceded by control character sets. The executable

statei-ents must (arbitrarily) begin in column nine. (NOTE: A tab

will not suffice to separate the control character sets froi the

executable statements.) In each executable statement that

requires an argument, the exact argument parameter from the

header statement must be used. Thus, if an executable line

requires argument three, the executable line must contain 1#'3

exactly where argument three is required. The interpreter will

substitute the arguments entered by the user into the specified

locations. As noted before, each command sequence ends with the

keyword "END." . and the entire action file command sequence

ends with the keyword "FINISH."

All executable statements in the action file are sent to

the CYBER for execution if preceded by the control character

set WS. Thus, these statements are exactly as required by the

CDC CYBER. Similar requirements must be met for other action

76

files. The order of these statements must also be acceptable to

the connected computer system. If not in the proper order or

syntactically incorrect, the CYBER system will generate error

conditions and display them to the user. Essentially, the

method of transferring files to and from the CYBER utilizes the

command execution mode of the CYBER system. In this mode, the

CYBER always responds after correct user input with "COMMAND-" ,

and this is indicated in the action file response line -- the

line preceded by the character "I" Up to two expected

responses from the connected system may be in the line after

the control character "I", beginning in column nine.

Instructions entered in the command sequences for PUT, GET, and

similar command strings, simply tell the CYLER to copy all input

to a file name or copy all output from a file name. The

NOVA/ECLIPSE access ports, when connected to the CYBER, send to

the input file and receive from the output file. To terminate

this copying, the command instruction %EOF is issued. All other

com.and sequences are straightforward and detailed in the CYBER

user documents.

All other executable statements not preceded by WS tell the

NOVA/ECLIPSE RDOS to do something. Most are straightforward and

all are explained within the body of this report. The lines

preceded by WC and RC contain executable statements for the RDOS

CLI. For example, the line containing

XFER/A # QQVV/R

is a CLI instruction to transfer the ASCII file named as

user-supplied argument one to the temporary disk file QQVV, and

77

to make file QQVV a random file. Control character sets RC and

WC precede these kind of executable line';, causing a swap to the

CLI to execute these instructions and then a swap back to the

main interpreter program. Those lines that are blank, except

for the control character set, have no statements to be executed

per so. The MONITOR software proceeds strictly upon the basis

of the control sequence read. In the case of the set RR, the

interpreter creates a tewporary file on the NOVA/ECLIPSE disk

that will be used by a subsequent RC statement. Hence, in order

for the command sequence to execute properly from start to

finish, any line with the RR control character set must be

followed by a line with the RC control character set. The RW

character set indicates that a carriage return needs to be sent

to the CYBER to initiate access. This particular co-mand

instruction is CYBER system dependent, and may require some

modification if expected to be used with another connected

computer system. The entry beginning in column nine after the

control set WL will be sent verbatim to the user terminal for

display. No other control character sets have been established

for the interpreter.

It should be noted that the PRDOS console interrupts have

not been deactivated anywhere within the software developed.

Thus, the console interrupts for the RDOS CLI are effective when

executed within .ONITOR. For example, an entry by the user that

is incorrect may be totally replaced by simply entering a

backslash "\" . The next keyboard entry will begin a new line.

The backspace works, and the "Control A" and "Control C" inputs

78

worl- as well. "Control A" and "Control C" cause the curreintly

executing program, such as MONITOR, to be interrupted and

control retiirijed to the RDOS CLI. "Control Ci also provides a

"Break" file that displays a dump of memory at the time of the

interrupt.

Finally, the action file for thie CYBER has been set up with

the following results. The products produced upon the CYBER

card punch and/or printer are to be output to the terminal

located in the AFIT School of Engineering. Further, all

products may be picked up at the bin labelcd "M/N" , since all

output products will be tagged with the banner NEO. The NOVA

terminal identification number for logging in purposes is

arbitrarily set at 777. Lastly, the order of the commands

entered into the action file is based upon use. Those commands

used frequently are placed in the action file's beginning,

whereas those used less frequently are placed later in the

action file. Since the interpreter searches the action file

sequentially fror the beginning each time a command is needed,

those used more often will be found in less time. (NOTE: The

same named command may appear more than once within an action

file. In order for the interpre'er to distinguish one command

from another, in this case, the number of arguments must be

different for each command name.)

79

6. Summrjy_

The instructions and guidelines contained within this user

manual are the minimui-. needed to operate MONITOR. Once a user

becomes familiar with the action files and interpreter, many

other opportunities may occur to experiment with the program

MONITOR that would alter the guidelines set forth herein. Such

changes are expected and desirable, if this command language is

to truly be general purpose. Furthermore, there may be areas in

which even the basic structure of the interpreter may be

profitably altereU. See the recommendations covered in Chapter

V of the main report for some potcntial examples. Finally, the

source listings and interactive guidelines have been developed

to provide the user with necessary instructions governing

MONITOR execution. Thus, a user should be able to use MONITOR

quite readily with only a listing of the selected action file to

consult, once program execution has begun.

80

Appendix B

Prop, am Descriit ive Flowcharts

81

START
lION IT01

OPEN ALL
ACTION4 FILES

CALL E~IGI

-CALL 1'RC-MPT

'I-
DES I l

ACTION FILE

CALL UETRSPS

CALL NVRT

ACT4.NIVT R PatI

TASK SY82

A

PROCEFS S
STR ING

'Ye

sen b For rcurn9 e clngp

Figc 5. MOIORFL(aDrt 2

14,'i L 83

EXANT rsli
NLE'r LTVFE OF
ACTJIN FILE

F What

I" charact 'r
set ?

Neither -

EXEXO 'I
COMI IAND

* nero esgei et eoereunn

FIg 6. WhNich?. (Prt 3

84 0

LOO!, FOR
SIIAI PS iONS

Any?

Yes

SUIBST]TUTE
1ARG TS jITE

Fig 7. MIONITOR.FR', (Part 4)

T

KILL
TASK SYSIN7

CCALLTOTEA"!

Fig 8. MONITOR.IR (Part 5)

85

TU CLI

Fig 9. NONITOIm . FR (Part 6)

START

] N /

7-_-L OP EN

86
Fig 10. BGIN.SR

">CR(" TO

$T'1 0

Fig 1 l. I'COIMT . St

S TA PT
C E TR ; ?S

R ES 1O1! 0 ,SI

RELAD

1.1

Not

I?

Yes

READ
REST OF

LINE

S a c~, What orI -, STONE 7'
Ci ;Irac Ler? I SET'COND

RESINNSE]

tNei ther

STOE "
FIRST

S ES P 0 S

__7i7

AO.A100 B19 AIR FORCE INST OF TECH WRIGH.T-PATTERSON AFS 044 SCNOO-(ITC F/ 9
CONSTRUCTIO OF 0 A GENERAL PURPOSE COMIMAND LANGUAGE FOR USE IN C-
SEP B0 W 0 BRIESS

UN~CLASSIF IED AFIT/BCS/EE/BOS-15 "

2 3

MEU omomm

I iiiiihiiiiiii
mmhhhhhhlom
hmhhhhhhl

C
START
CCNVRT)

F

LOAD
ELEMENT OF

FIRST ARRAY

Las No S14AP
eiement?

BYTES

Y r

Yese ,

aLOAD STORE
STOREIN FiRSTELEMENT OF IN FIRST

SECOND ARRAY BUFFER

Last -No SWAP
element? No BYTES

I
Yes

STORE

R IN SECOND
BUFFER

L

Fig 13. CNVRT.SR

88

START
TOTERM

0 P

REMOVE
$TTOI &

$TTIl

CALL
TERUO1P:

Fig 14. TOTERM.SR

CALL
tJRSYS

* Return to a specified line number (602)

Fig 15. WRITSYSTM.FR

89

Fg6.WRSYS.S

TO $TTO

R* R*

Fig 7. RITL CAL F ig Fig 18. EAD WRI S.

W90

- -,

START
RDAWR

GET INPUT
FROM

$TT I

OUTPUT
"CR" TO

$TTO/ $TTo1

SUSPEND
MONITOR

Fig 19. RDAWR.SR

RR

CREAT FILE
"lVVQQ"I

*Return to a specified line number (602)

Fig 20. READYREAD.FR

f 91

WC,

CREATE &
OPEN FILE

"CL I. CM"

WRIJTE
ARRAY T

"CLI .CM"

CLOSE FILE
"CL 1. CM"

*~~~ ~KL Reuntoasecfe SinKube 62

Fig 1. SCAL F(Y

I
XC2

XCLI.

START
EXCLI

OPEN FILE
"CLI. CM" FOR
APPENDING

WRITE
lipOP<1 5>

TO0 "CLI.C'

CLOSE
FILE

"CLI. Cf-"

EXECUTE
CLI.SV ON
LEVEL TWO

DELETE

,FILE
"CLI. CM"

Fig 22. EXCLI.SR

93

START
GETFILE

OPEN FILE
"QQVVII

large FILhaE LAST AR OF BYTE

STATUS FOR BLOCK NU zero?"1QQVV"1 OF "QQVV"

eNo

LOAD SIZE ADD BYTES CHANGE
OF FILE OF LAST BLOCKS TO"QQVV"I [BLOCK BYTES

lagrta LST PART OF BYTES

INTO BUFFER SENDIT $TT01

JUMP TO R LOAD &
SUBROUTINE I DELOCK

RECOMPUTE
SIZE OF

"QQVV"

Fig 23. GETFILE.SR

94

START
SENDIT

SAVE
PROCESSOR

STATE

GET WORD
TO OUTPUT

OUTPUT
LEF T BYT
TO $-TO1 Ej

THEN RIG
BYTE TO
$TTO,

Buffer No INCREMENT

empty? BUFFER
POINTER

Yes

RESTORE
PROCESSOR

STATE

Fig 24. GETFILE.SR (Part 2)

95

CREATE &
OPEN FILE

"CLI. CM"

WRITE
ARRAY TO
"CL I. CM"

CLOSE
"CL I. Cbl"

KILL TAS K

SYI

96

START
TERMOP

DEFINE
"LINERD"

AS A TASK

DEFINE
INTERRUPTS

$TTOl/$TTIl

GET INPUT
FROM $TTT

Fig26 TEOPS (Pat 1

Is

COMPARE

OUT PTR

FiY 7.TeOPSsPat2

98me

NoA

STIARr
$TTIl
-,S 'RVICE

SAVE
PROCESSOR

STATE

START
$TTOI INEPUT

SERDVICE CHARACTER

I 4CLEARj
NTERRUPT

CLEAR
INTERUPTSTORE

CHARACTER IN
BUFFER

INCRE14ENT

Fig~~IPT 28HALT.S Pat3

~Fig 2. TERMOP.SR (Part 4)Ye

99 f e Ott

START
SYS IN

DEFINE E

INTERRUPTS
$TTOI/$TTIl

COMPARE
INPTR TO

OUPT

FigE 30. YeNs (PaR ME1)

DELAYSaine D100

C

LOAD1
CONTEITTS

OF OUTPTRj

INCREMNhT
OUT PT R

En chrate ae RESTC

INCRENMNNT

&STORE E

FiNEWSSNS (at2

OUT101

D

LOAD MATCH
BUFFER
START

LOAD FIRST
RESPONSE
AND' SIZE

COMPARE A
CHARACTER
OF EACHI

Same? F

Yes

INCREMENT
BUFFER

POINTERS

DECREIENT

RESPONET

ZeroPOINTERS TO

Fig 32. SYSIN.SR (Part 3)

102

F

LOAD MATCII
BUFFER
START

LOAD SECOND
RESPONSE
AND SIZE

COMPARE A
CHARACTER

OF EACH

INCREMIENT
BUFFER

POINTERS

DECREMENT
RESPONSE

SIZE

No Sie e RESET

ZeroPOINTERS TO
BEGINNIh -

Fig 33. SYSIN.SR (Part 4)

103

OPEN
FILE

TOT BRROINNINGO

FigL 34ASSI.SU(arR5

VVQQ Ye LAD OE WRT04

Appendix C

Loadin9 and Executing MONITOR

Each individual routine or subroutine created for the

NOVA/ECLIPSE must be separately compiled or assembled. In

accordance with the RDOS conventions, all assembly language

routines have been given the file name extension ".SR" . All

FORTRAN routines have been given the file name extension ".FR"

For example, the source code for the main interpreter program

is named MONITOR.FR, and the source code for the separate task

program is named SYSIN.SR. To assemble each assembly langauge

source program, the MACRO assembler was used. A typical

instruction to cause assembly follows:

MAC SYSIN

The extension is not needed, since the asscmbler automatically

searches for the file name with the extension ".SR" . To

compile each FORTRAN language source program, the FORTRAN

compiler was used. A typical instruction to cause compiling

follows:

FORT MONITOR

The extension is not needed, since the compiler automatically

searches for the file name with the extension ".FR" . The local

switch "/L" (slash and L) may be used to create a disk file to

contain the assembled/compiled results.

The RDOS relocatable loader was used to load all previously

assembled and compiled programs. The first file name listed in

the loader instruction sequence becomes the executable save

105

file. All such files are given the file name extension ".SV"

The local switch "/L" may be used to create a disk file to

contain the load map of the results. The following string

command was used to load all programs/sources that constitute

the MONITOR command language interpreter:

RLDR/P/U MONITOR BGIN PROMPT REVERT GETRSPS CNVRT
WRITSYSTM WRSYS WRITLOCAL READLWRITS RDAWR SENDFILE
EXCLI GETFILE READYREAD RECEVFILE TOTERM TERMOP
SYSIN FMT.LB FORT.LB MINE5/L

Once executed, file MINE5 contains the load map and file

MONITOR.SV is the executable binary file. The local switch "/P"

causes the normal relocatable value of each separate binary

file to be printed out to file MINE5, and the switch "/U" causes

a chain of undefined symbols to be maintained. File FORT.LB

supplies needed FORTRAN runtime libraries and file FMT.LB

supplies the needed multitasking library. The order and

sequence of the loader command is as specified in the RDOS

Reference Manual (Ref 9:D-6).

106

Appendix D

Prop~ratn M-ONITOR Source Listing

107

C-

C
C + + + ++ ++. +++ ++++++++ ++++++

C + +

C + MONITOR.FR +

C + **** CREATED 30 AUGUST 1980; REV 01 **** +

C + +

C + + + + + + + + + + + + + + + + + ++ + + + + + + + +

C
C ---
C--

C
C

C
C Program MONITOR.FR provides a simplified, general purpose

C Command Language for use in computer to computer dialog.

C The host system is a Data General (DG) NOVA 2/10 that is

C connected via a shared disk operating system to a DG

C ECLIPSE S/250. Via a standard RS 232 modem link, this

C program allows intercommunication to any compatible computer

C system. Hereafter, the NOVA/ECLIPSE is referred to as
C "local" and the connected computer as "system." The

C program was initially designed for intercommunication with

C the ASD Control Data Corp CYBER 750 as the "system."

C

C MONITOR serves as a basic command string interpreter. Upon

C execution of MONITOR, the user is provided instructions on

C how to access the "system" and a prompt -">"- to enter

C commands. Command structure and use are described in the

C MONITOR Command Language User's Manual.

C
C "Local" input is received on a "local" device channel - $TTO1.

C "Local" output is transmitted on device channel - $TTIl. Via

C multitasking, a task (SYSIN.SR) is always monitoring input

C while another task (I4ONITOR.FR) is always conducting output.

C MONITOR acts as the executive control of these functions, in

C addition to its role as interpreter.

C
C The structure, concept, design, and implementation of program

C MONITOR and its assorted subroutines are detailed in the thesis

C that accompanied the development - AFIT/GCS/EE/80-2.

C

C

C
C--

C--

108

C
C ** Start the program by defining tasks, channels, parameters, **
C etc. CHANTASK 77,2 declares that up to 77 distinct channel
C numbers may be used in the program and that 2 asynchronous
C tasks may be executing "simultaneously."
C

CHANTASK 77,2
C
C ** PARAMETER MDIMl is the size of the one-dimensional command *
C instruction arrays. MDIM2 is the size of the one-dimensional
C argument arrays and valid instruction string array. MDIM3
C is the size of the one-dimensional response arrays.
C

PARAMETER MDIMI = 82, MDIM2 = 30, M1DIM3 = 40
C
C ** SYSIN.SR is a separately-compiled assembly language program **
C that serves as the task for monitoring all "system" input.
C DG FORTRAN requires this program to be externally defined in
C the calling program (MONITOR), before it is activated via a
C call to ITASK.
C

EXTERNAL SYSIN
C
C ** INPUT is the initial array store for input commands. After **
C a determination of the command's validity, IACTFILE is the
C array store for command strings read from the action file.
C Up to four (4) arguments are possible with any single
C input cohimand, and the arguments are stored in the IARG
C arrays. Up to two (2) separate responses from the "system"
C may be provided, and they are stored in the IRSP arrays.
C

DIMENSION INPUT(MDIMl), ICOMMAND(MDWIM2), IARGI(ODfIM2)
DI14ENSION IARG2(1fDIM2) , IARG3(VIDIM2) , IARG4(MDIM2)
DIMENSION IACTFILE(MDIM), IRSPI(MDIM3), IRSP2(!,1DI13)

C
C ** Characters used for comparisons and decisions are data **
C initialized. Therefore, they must be declared COMMON
C as well. The data are mnemonic. For example, KLTRW is
C the letter "W" and KOMIMA is a
C

COMMON /KONST/ KSPACE, KSLS11, KOMMA
COMMON /KONST/ KUPAROW, KLTRL, KLTRT
COMMON /KONST/ KNULL, KPERIOD, KLTRF
COMMON /KONST/ KLTRE, KLTRC, KLTRW
COMMON /KONST/ KLTRR, KSIIARPSGN ,KLTRS
COMMON /KONST/ KNUMI, KNUM2, KNUIL3
COMMON /KONST/ KNUM4

C
DATA KSPACE,KSLSH ,KO 1MA/ "<40><40>", "<57><40>", "<54><40>"/
DATA KUPAROW,KLTRL,KLTRT/ "<136><40>","<114><40>","<124><40>"/
DATA KNULL,KPERIOD,KLTPF/ "<O><40>","<56><40>","<106><40>"/
DATA KLTRE,KLTRC,KLTRW/ "<105><40>",1"<103><40>","<127><40>"/
DATA KLTRR,KSHARPSCN,KLTRS/ "<122><40>","<43><40>","<123><40>"/
DATA KNUMI ,KNUM2 ,KNUKt3/ "<61 ><40>", "<62><40>", "<63><40>"/
DATA KNUM4/ "<64><40>"/

109

C

C ** DG FORTRAN allows labels to be tagged. The following are **

C thus defined:

C

ASSIGN 102 TO IDOOVER
ASSIGN 106 TO IILGNUI

ASSIGN 108 TO IICONT

ASSIGN 202 TO IPROMPT
ASSIGN 206 TO IEND206
ASSIGN 304 TO ISYNERR

ASSIGN 306 TO IRMSTOR

ASSIGN 404 TO ILMSTOR

ASSIGN 406 TO I2CONT

ASSIGN 412 TO ICMDSTOR
ASSIGN 420 TO IIARGSTOR

ASSIGN 428 TO I2ARGSTOR

ASSIGN 436 TO I3ARGSTOR

ASSIGN 444 TO I4ARGSTOR
ASSIGN 446 TO ILGTHERR
ASSIGN 502 TO IEXAMFILE

ASSIGN 506 TO INOMOENTRY
ASSIGN 508 TO ICHKHDR

ASSIGN 512 TO I3CONT

ASSIGN 602 TO I4CONT
ASSIGN 606 TO IEXECUTE

ASSIGN 608 TO ICIIKSUBS

ASSIGN 610 TO ICONTC11K
ASSIGN 614 TO NRMSTOR

ASSIGN 615 TO I5GONT

ASSIGN 702 TO ITERMOP

C
C ** BGIN.SR opens channels 21 and 22 for "local" input and **

C output.

C

CALL BGIN
C
C ** The various possible action files to be interpreted are **

C opened on the channels indicated.

C
CALL OPEN (l,"CACT",2,IEROR,82)

IF (IEROR .NE. 1) STOP CACT NOT OPENED PROPERLY.

CALL OPEN (2,"DACT",2,JEROR,82)

IF (JEROR .NE. 1) STOP DACT NOT OPENED PROPERLY.
CALL OPEN (3,"VACT",2,KEROR,82)

IF (KEROR .NE. 1) STOP VACT NOT OPENED PROPERLY.

CALL OPEN (4,"MACT",2,LEROR,82)
IF (LEROR .NE. 1) STOP NACT NOT OPENED PROPERLY.

C

C

110

TYPE "Th ionitor program you have entered provides "

TYPE "intercommunication between the P7OVA/ECLIPSE computer"
TYPE "system and your choice of another system."

TYPE " "

TYPE " "

C IDOOVER = 102
102 TYPE "Please enter the digit opposite the action file"

TYPE "you desire to use: "

TYPE " "

TYPE " 1 - CDC CYBER"
TYPE" 2 -- DECl1 "

TYPE " 3 -- VAX 11/780
TYPE " 4-- Your own

C
C ** Call the program PROMPT to signal the user to

C provide some kind of terminal entry.

C
CALL PROMPT

C
C ** Get the correct action file requested bj the user. **

C

READ (11,104) INTRY

104 FORIAT (II)
C

IF (INTRY I.E. 0 .OR. INTRY .GE. 5) GO TO IILGNUM
GO TO (1,2,3,4) INTRY

C
C IILGNUM = 106

106 TYPE "You have entered an illegal number. Try again!"

GO TO IDOOVER

C
1 TYPE "You have selected the CYBER."

GO TO IICONT

C
2 TYPE "You have selected the DEC."

GO TO IlCONT

C
3 TYPE "You have selected the VAX."

GO TO IlCONT

C
4 TYPE "You have selected your own file."

GO TO IlCONT
C
C ** Once the desired action file has been selected, GETRSPS.FR **

C finds the action file and stores the responses to be sought

C from the "system" from this point forward.

C
C IlCONT = 108
108 CALL GETRSPS (INTRY,IRSP,IRSP2,I1SSZ,12SSZ)

C
C ** CNVRT.SR converts the characters stored in FORTRAN format, **

C and found in GETRSPS, to assembly language format. It

C uses the same arrays and also returns the size of the

C response arrays.

C
CALL CNVRT (IRSPI,IRSP2,I]SSZ,T2SSZ)

111

C

C -

C
C The preliminaries are over and the program is now ready **
C for user instruction inputs.
C

TYPE "Thank you. Please enter a conmmand."
C
C * ITASK activates task SYSIN.SR with identity number ten (10) *
C and priority one (1). Thus, SYSIN has lower priority than
C the calling program - MONITOR. MONITOR has priority zero (0).
C

CALL ITASK (SYSIN,10,],IER,1)
IF (IER .NE. I) STOP SYSIN NOT ACTIVATED PROPERLY.

C
C * Provide the user with the pronipt ">" **

C
C IPPOM'PT = 202

202 CALL P(,0.IP°'

C
C ** After each access to the action file, its pointer needs **
C to be reset to the file's beginning. The call to FSEEK
C resets the pointer accordingly.
C

CALL I'SEEK (I1XTRY,0)
C
C ** Read what the user inputs and store in INPUT. Word entries **
C may be separated by individual commas or single spaces.
C

READ (11,204) (INPUT(I), I = 1, MDIMl)
204 FORIAT (82A1)

C
C ** Check to see if user desires terminal only operation or a **
C return to the "local" command language - CLI. An input of
C "^L" reverts user to the "local" CLI. An input of "^T"
C causes terminal only operation.
C

DO 206 INDXA = I, MDIMI
IF (INPUT(ONDYA) .NE. KUPAROW .OR. INDXA .GE. MDIMI)

+ GO TO IEND206
INDXA = INDXA + 1
IF (INPUT(INDXA) .EQ. KLTRL) CALL REVERT
IF (INPUT(INDXA) .EQ. KLTRT) GO TO ITERMOP
INDXA = INDXA- 1

C IEND206 = 206

206 CONTINUE
C
C --- --------------

112

C
C * Search array input iipkht to left to find the first non-null/Vk'-
C non-blank character.
C

DO 302 INI)X - 1, I MlDtl
IF (INPUT((MDI1- + 1) - INDXB) .EQ. KOI4NA)

+ GO TO ISYNERRI
IF (]NPUT((rIDI1iI + 1) - INDXB) .NE. hNULL .AND.

+ INPUT((IDri1 + 1) - INDXB) .NE. KSPACE)
+ GO TO IRMSTOR

302 CONTINUE
C
C ** If none, so state and return to prompt. **
C

TYPE " "
TYPE " INVALID COMMAND - EMPTY STRING
GO TO IPROM(1PT

C
C * If the string ended with a separator comma, so state
C and return to the prompt.
C
C ISYNERR = 304

304 TYPE
TYPE " SYNTAX EROR
TYPE " ***** FIRST OR LAST LITERAL INVALID SEPARATOR

GO TO IPRONPT
C
C ** Otherwise, store the index of the rightmost character.
C
C IRMSTOR = 306

306 IRTMqSTINDX = (NDITl + 1) - INDXB
C
C...

C
C ** Now find the leftmost character. **
C

DO 402 INDXC = 1, MDI1I
IF (INPT(I!DXC) .EQ. KOP-iA) GO TO ISYNERR
IF (INPUT(1NDXC) .NE. KSPACE) GO TO ILMSTOR

402 CONTINUE

C
C ** This error return should never be taken. **
C

TYPE"
TYPE " * INVALID COMMAND - EMPTY STRING ***"
GO TO IPROMPT

C
C * Discard initial blanks/spaces and store it. **
C
C ILMSTOR = 404

404 LTMOSTINDX = INDXC
C

113

C ** Check for obvious error condition. **
C

IF (LTMTSTIDX .1E. IRTMISTINDX) GO TO 12CONT

C
TYPE

TYPE " 1 NVALID COINDAND - TOO FEW CHARACTERS *

GO TO II'ROMPT
C

C ** Now search the input string for the command portion, i.e.,
C until a separator or a rightmost character is encountered.

C
C I2CONT = 406

406 DO 408 IED)XD = LTMOSTINIX, II',TISTIN1DX
IF (INPUT(iNDxD)) .EQ. ESPACE .OR. INPUT(INDXD) .EQ.

4 KOMA) GO TO ICNIDSTU1,

408 CONTINUE:
C
C ** If the string is a single co-mmand, store it in COMIAN'D.

C First, initialize index for the COM1 \,:Di) array.

C

NDIMI = (IRTNSTINM)X - L'J'I'OSTlI'DX) + I
IF (NDII:l .GT. MDINI2) GO TO IIG11'ERR
DO 410 INDXE = 1, NDIM1

ICO IAND(IEDXE) = I11'UT(INDXE + (LTPOSTINDX - 1))

410 CONTINUE

C
C ** At each point that the number of arguments is determined, **

C jump ahead to execute the command. In this case, for example,

C there is just a command word and no arguments.

C
C

NUMARGS = 0

GO TO IEXAIFILE
C
C
C ** A separator was encountered, so there is more than just a **
C single command. Store the command portion and resolve the

C rest of the string.

C
C ICMDSTOR = 412

412 NDIMI = INDXD - LTIHOSTINDX
IF (NDIM1 .GT. MDIlM2) GO TO ILGTELRR

DO 414 INDXF = 1, NDIl
ICOAND(INDXF) = INPUT(INDXF + (LTMOSTINDX - 1))

414 CONTINUE
C
C ** Proceed to establish the value of the first argument. **

C
IDXPl = INDXD + 1
DO 416 INDXG = IDXPI, IRTIISTINDX

IF (INPUT(I1;DXG) .EQ. KSPACE .OR. INPUT(INDXG) .EQ.

+ KOMMA) GO TO IlARGSTOR

416 CONTINUE

C

114

C ** If a single argument, process it. **
C

NDIM2 = IRTMSTI1)X - INDXD
IF (NDIM2 .GT. ID]I2) GO TO ILGTHERR
DO 418 INDXH = 1, NDI'M2

IARGI(INDX11) = INPUT(INDX11 + INDXD)
418 CONTINUE

C
C

NUMARGS = 1

GO TO IEXAIFILE
C
C
C ** A separator was encountered. Store the first argument **
C portion and resolve the re,.t of the string.
C
C IIARGSTOR = 420

420 NDIM2 = INDXG - (INDXD + 1)
IF (NDIE2 .GT. NDIM2) GO TO ILGTIIERR
DO 422 INDXI = 1, NDIN2

IARG1(INDXI) = INPUT(INDXI + INDXD)
422 CONTINUE

C
C ** Proceed to get the next argument for array 2. **

C
IGXP1 = INDXG + 1
DO 424 INDXJ = IGXPI, IRTMSTINDX

IF (INPUT(INDXJ) .EQ. KSPACE .OR. INPUT(INDXJ) .EQ.
+ KOIMMA) GO TO I2ARGSTOR

424 CONTINUE
C
C ** Just two arguments - process the second. **

C
NDIM3 = IRTMSTINDX - INDXG
IF (NDIH3 .GT. MDIM2) GO TO ILGTHERR
DO 426 INDXK = 1, NDIM3

IARG2(INDXK) = INPUT(INDXK + INDXG)
426 CONTINUE

C
C

NIUIIARGS = 2
GO TO IEXAMFILE

C
C
C ** A separator was encountered. Store the second argument **
C portion and resolve the rest of the string.
C
C I2ARGSTOR = 428

428 NDIIK3 = INDXJ - (INDXG + 1)
IF (NDIM3 .GT. MD1M2) GO TO ILGTIIERR
DO 430 INDXL = 1, NDIM3

IARG2(INDXL) = INPUT(INDXL + INDXG)
430 CONTINUE

C

115

C ** Procede to get the next argument for array 3. **
C

IJXP1I , IrDXJ + 1
DO 432 INDXM = IJXPI , IRTIMSTINDX

IF (INPUT(ONDXII) .EQ. KSPACE .OR.]NPUT(INDXM) .EQ.
+ KO,',A) (0 TO 13AR;STOR

432 CONTINUE
C
C ** Just three arguments - process the third. **

C
NDIM4 = IRTNSTINDX - IVDXJ

IF (NDIM4 .CT. MDIM2) GO TO IGTIIERR
DO 434 INDXN = I, NDIM4

IARG3(INDXN) = INPUT(INDXN + INDXJ)
434 CONTINUE

C
C

NUMARGS = 3
GO TO IEXAMFILE

C
C
C ** A separator was encountered. Store the third argument **

C and resolve the rest of the string.
C
C I3ARGSTOR = 436

436 NDIM4 = INDXI - (INDXJ + 1)
IF (IDnl4 .CT. IDIN2) GO TO ILGTHERR
DO 438 INDXO = 1, NDI4

IARG3(INDXO) = INPUT(INDXO + INDXJ)
438 CONTINUE

C
C ** Procede to get the next argument for array 4. **

C
IXP1 = INDXM + 1
DO 440 INDXP = IMXP1, IRTMSTINDX

IF (INPUT(INDXP) .EQ. KSPACE .OR. INPUT(INDXP) .EQ.
+ KOMMA) GO TO 14ARGSTOR

440 CONTINUE
C

C ** Just four arguments - process the fourth. **
C

NDIM5 = IRTMSTINDX - INDX1I

IF (NDIM5 .GT. MlDIM2) GO TO 11. t ,ERR
DO 442 INDXQ = 1, NDIM5

IARG4(INDXQ) = INPUT(lNDXQ + INDXM)
442 CONTINUE

C
C

NUMARGS = 4
GO TO IEXAMFILE

C
C

116

C ** A separator was encountered. There are too many arguments. **

C Give an error message and return to the prompt.
C
C 14ARGSTOR 444

444 TYPE "

TYPE " **** INVALID COMMAND - TOO MANY ARGUMENTS ***:*"

GO TO IPROMPT
C
C ILGTHERR = 446

446 TYPE " "
TYPE " ***** INVALID CO. MNAND - TOO MANY CHARACTERS **** "

GO TO IPROIMPT
C
C --
C
C ** Once a potentially valid command string has been accepted, **
C it is time to examine the action file for that command.
C The strings of the action file are read into IACTFILE.
C
C IEXANfFIIE = 502

502 READ (INTRY,504) (IACTFILE(J), J = 1, M IMI)
504 FORMAT (82AI)

C
C ** Check the first character of the line just read. **
C If an "F", there are no more entries to read. If a
C period, then the encountered header line needs to be checked.
C

IF (IACTFILE(1) .EQ. KLTRF) GO TO INOMOENTRY
IF (IACTFILE(1) .EQ. KPERIOD) GO TO ICHKHDR

GO TO IEXAMFILE
C
C INOMOENTRY = 506

506 TYPE "

TYPE " * INVALID COMMAND *
TYPE " COMMAND NOT IN ACTION FILE ** "

TYPE " * OR SUPPLIED NOT EQUAL REQUIRED ARGUMENTS ***** "
GO TO IPROMPT

C
C ** All commands are ten (10) characters or less. Here, **
C the command portion of the header is determined.
C
C ICHKHDR = 508

508 DO 510 INDXZ = 7, 17
IF (IACTFILE(INDXZ) .EQ. KSPACE .OR.

+ IACTFILE(INDXZ) .EQ. KOtMMA) GO TO 13CONT
510 CONTINUE

C

1~117

C ** Compare the header command to that input by the user. **
C If correct, proceed. Otherwise, return to rend the action
C file again until finished, or the next header is encountered.

C
C 3CONT = S12

512 INDXY = INDXZ - 7
C

IF (NDIM1 .NE. INDXY) GO TO IEXAMFILE
DO 514 INDXX = 1, INDXY

IF (IACTFILE(INDXX + 6) .NE. ICOM-AND(INDXX))
+ GO TO IEXAMFILE

514 CONTINUE

C
C ** Look at the number of required arguments for this command. **

C If there are no arguments, then two spaces after the
C command string in the header will be a space. Siirilarly,
C if there is one argument, five spaces after the command string
C in the header will be a space, and so forth. The INDX

C numbers are the location of the sharpsigns in the header
C string. Compare the command string in IACTFILE with the
C sharpsign location to determine how many arguments are required.

C
INDX1 = INDXZ + 1 ;The sharpsign is 2:5,8,
INDX2 = INDXZ + 4 ;and 11 spaces after command
INDX3 = INDXZ + 7 ;string - 1,4,7, or 10 spaces
INDX4 = INDXZ + 10 ;after comma, if arguments exist

C
NNUMARGS = 4
IF (IACTFILE(INDX4) .EQ. KSPACE) NNUMARGS = 3

IF (IACTFILE(INDX3) .EQ. KSPACE) NNUMARGS = 2
IF (IACTFILE(INDX2) .EQ. KSPACE) NNUMARGS = 1
IF (IACTFILE(INDX1) .EQ. KSPACE) NNUMARGS = 0

C
C ** Compare the required number of arguments with the supplied **

C number of arguments.

C
IF (NUMARGS .EQ. NNUMARGS) GO TO 14CONT

C
C ** If the arguments supplied are not equal the number required,**
C then continue to examine the action file for the same named
C command with the appropriate number of arguments. (NOTE: This
C means that more than one command with the same name may be entered
C and found within the action file, but each must have a different
C number of arguments.)

C

GO TO IEXAMFILE

C
C---

118

C
C ** If -rguients required vqual org;acnts supplied, then read **

C the next live in the action file, which is the first cori~and
C in the coinand sequence. The last comwand in the sequence

C precedes "END."
C

C 14CONT = 602
602 VEAD(INTRY,604) (IACTFILE(K), K = I, MDIMI)

604 FORNA'iT (82Al)

C
C ** Look at the first two control letters to determine **

C specific actions to take. If "END." is encountered, the command

C sequence is over. If an "S" or "C" is encuuntered in colurmn

C two (2), then the string needs to be checked for substitution

C of arguments for the sharpsigns in the action file. Then the

C remaining control letters are examined. Appropriate subroutines

C are called to execute thL, strings as required. Each subroutine

C returns to the place where a new line out of the action file

C may be read and examined. For further discussion of control

C characters, look at the action file documentation or the

C MONITOR Command Language User's Manual.

C

IF (IACTFILE(1) .EQ. KLTRE) GO TO IPROMPT

IF (IACTFILE(2) .EQ. VLTRS .OR. IACTFILE(2) .EQ. KLTRC)
+ GO TO ICIII{SUBS

C IEXECUTE = 606

606 IF (IACTFIIE(1) .EQ. KLTP, W .AND. IACTFILE(2) .EQ. KLTRS)

+ CAIL WRITSYSTE (IACTFILE,NRPTVSTINDX,$602)

IF (IACTFILE(l) .EQ. KLTRU .AlD. TACTFILE(2) .EQ. KLTRL)
+ CALL WRITLOCAL (IACTFILE,iDI1!l,$602)

IF (IACTFILE(1) .EQ. YLTRR .A1D. IACTFILE(2) .EQ. KLTRW)
+ CALL READIWRITS ($602)

IF (IACTFILE(1) .EQ. KLTRU .AND. JACTFILE(2) .EQ. KLTRC)

+ CALL SENDF1LE (IAtTFILE,1!DIN:I,$602)

IF (IACTFILE(1) .EQ. FLRK .A1D. IACTFILE(2) .EQ. KLTRC)

+ CALL, RECEVILE (IACTFTLE,DIMl,$602)

IF (JACTFILN(1) .EQ. KLTRR .AND. IACTFILE(2) .EQ. KLTRR)
+ CALL READYRELAD ($602)

C

C ** If unexpected letters are encountered, the action file is **

C suspect. Abort and try again.

C

TYPE " "

TYPE " * COMMAND ABORT *
TYPE " ***** UNEXPECTED ENTRY IN ACTION FILE ** "

GO TO IPROMPT

119

C
C ** Check for and make any required substitutions. **
C
C ICIIKSUBS = 608

608 IBGININDX = 9
C
C ** Start looking in column nine (9) for sharpsigns to replace. **
C Then use new value of IBGININDX on subsequent iterations.
C
C ICONTCHK = 610

610 DO 612 NAINDX = IBGININDX, NDIMl
IF (IACTFILE(NAII;DX) .EQ. KSHARPSGN) GO TO 15CONT

612 CONTINUE
C
C ** There were no sharp signs or there are no more sharp signs. **
C Now find the rightmost index of the current coiimand line
C and return to execute string.
C

DO 613 NCINDX = 1, MDIM1
IF (IACTFILE ((MDIMI + 1) - NCINDX) .NE. KNULL .AND.

+ IACTFILE ((MDIMI + 1) - NCINDX) .NE. KSPACE)
+ GO TO NRMSTOR

613 CONTINUE
C
C NRMSTOR = 614

614 NRTMSTINDX = (0DIMl + 1) - NCINDX

C
GO TO IEXECUTE

C
C ** Collapse the array about the sharp signs. **

C
C 15CONT = 615

615 NAPIlNDX = NAINDX + 1

NAIINDX = NAINDX - 1
IF (IACTFILE(NAPINDX) .EQ. KNUMI) IVALOFSGN = 1
IF (IACTFILE(NAPINDX) .EQ. KNUM2) IVALOFSGN = 2
IF (JACTFILE(NAP1IIDX) .FQ. KNU1i3) IVALOFSGN = 3
IF (IACTFILE(NAP1INDX) .EQ. KNUM4) IVALOFSGN = 4
M2MDIMl = MDIMI1 - 2
DO 616 NBINDX = NAINDX, M2MDIMI

IACTFILE(NBINDX) =IACTFILE(NBINDX +2)
616 CONTINUE

C

120

C ** Determine the size of the argument arr ys (IARG) and expand **

C the command sequence in IACTFILE to make room for the

C substitution of the IARG arrays, whcre the corresponding
C sharpsigns had been. IVALOFSGN is the value of the particular

C sharpsign being substituted with IARG.

C
GO TO (618,620,622,624), IVALOFSGN

C

618 ISIZEARG = NDIM2
GO TO 626

620 ISIZEARG = NDIM3

GO TO 626

622 ISIZEARG = NDIM4
GO TO 626

624 ISIZEARG = ND115

C

C ** Expand the array to make room for the substitution of IARC. **

C
626 IRGHTMST= 1DIMI' - ISIZEARG

!NCRMAX = IRGHTMST - NAINDX

IACTFILE(IRCIITNST + ISIZEARG) = IACTFILE(IRGHTMST)
DO 628 MIl = 1, INCRIMAX

IACTFILE((IRG1ITMST- M) + ISIZEARG) =

+ IACTFILE(IRGHTIIST - MI)
628 CONTINUE

C

C ** Replace each sharp sign -- #1, #2, #3, and #4 -- if used. **

C
GO TO (630,634,638,642), IVALOFSGN

C
630 DO 632 M2 = 1, ISIZEARG

IACTFILE(NAM1INDX + 112) = IARG1(N2)

632 CONTINUE
GO TO 646

C
634 DO 636 M3 = 1, ISIZEARG

IACTFILE(NAM1INDX + 113) = IARG2(i3)

636 CONTINUE
GO TO 646

C
638 DO 640 1'4 = 1, ISIZEARG

IACTFILE(NAMIINDX + 114) = IARG3(M4)

640 CONTINUE
GO TO 646

C
642 DO 644 M5 = 1, ISIZEARG

IACTFILE(NAM1INDX + 115) = IARG4(M5)

644 CONTINUE

C
C ** Recalculate IBGININDX for the next iteration. **

C
646 IBGININDX = NAINDX + ISIZEARG

C
GO TO ICONTCHK

121

C
C--

C
C ** Before going to the terminal operation mode, inactivate **

C (kill) the task SYSIN. Then call the program TOTERI.I.SR,

C which removes defined device codes utilized within SYSIN.

C

C ITERMOP = 702
702 CALL AKILL(1)

C
CALL TOTERP]

C
C
C STOP END OF TIE PROGIAM
C

END

C
C---
C--
C

C + ++ + + + + + 4 + + + - + + 4 4 + + ++ + + ++

C + +

C + END IIONITOR. FR +
C + +
C + + + + + ++ + + + + + + + + + + + + ++ + + + + +

C
C--
C---

122

+ BG IN. SR +
+ CREATED 3 JULY 1980; REV 01 *** +

Program BGIN.SR is called from MONITOR.FR and returns to
MONITOR. It is called at the beginning of the IMNITOR program
to open devices $TTO and $TTI for all subsequent programs.
There are no arguments or parameters that are passed via BGIN.

.TITL BGIN ;Programn name - Begin

.ENT BGIN ;Enables outside entry into this
;program

.TXTM 1 ;Packs ASCII strings left to right

.EXTU ;Undefined variables are treated
;as External Displacement variables

.EXTN .1 ;Provides some FORTRAN initialization

.NREL ;Normal relocatable space starts

FS.

1 23

BEGIN TO OPEN DEVICES

EGIN : JSR @ .FARL

START: SUB 1,1 ;Load default mask

LDA 0, TTO ;Load bytepointer to STTO
.SYSTM

.OPEN 21 ;Open $TTO on channel 21
JMP ERROR
LDA 0, NTTI ;Load bytepointer to $TTI

. SY STM

.OPEN 22 ;Open $TTI on channel 22

JMP ERROR

JMP RT ;Jump to return location when complete

ROUTINE TO RETURN TO TIE CLI ABNORMALLY

ERROR: .SYSTM
.ERTN ;Abnormal return - error

JIP ERROR

BYTEPOINTERS DEFINED

NTTO: .+I*2 ;Bytepointer to device $TTO

.TXT "$TTO"

NITI: •+l*2 ;Bytepointer to device $TTI

.TXT "$TTI"

RT: JSR @ •FRET

FS.=O

TMP=-167

.END BGIN

; + +

+ END BGIN.SR +
; + +

124

; + +

+ PROMPT.SR +
+ * CREATED 3 JULY 1980; REV 01 **** +

* + +

Program PRONPT.SR is called from M!ONITOR.FR and returns to
MONITOR. It is called several times within MONITOR, each timc

to provide the user a prompt that information may be entered.
The prompt character for MONITOR is ">" . There are no arguments
or parameters that are passed via PROMPT.

.TITL PROMPT ;Program name - Prompt

.ENT PROMPT ;Enables outside entry into this

;program

.TXTM 1 ;Packs ASCII strings left to right

.EXTU ;Undefined variables are treated

;as External Displacement variables

.EXTN .I ;Provides some FORTPN initialization

.NREL ;Normal relocatable space starts

FS.

125

WRITE PRO'PT TO $TTO

PROMPT: JSR @ .FARL

START: SUB 1, I ;Load default mask

LDA 0, PRMT ;Load bytepoirter to prompt

. SYSTM

.WRL 21 ;Write prompt to channel 21
JIIP ERR
JMP RT ;Jump to return location when complete

ROUTINE TO ,FTU".. TO TttE CIA ABNONMIALLY

ERROR: .SYSTM
F RT i ;Abnormal return - error

JMP EMIP(R

; BY'I' PO(I: fi !:)i Y I ' .I

PRT: .+lV2 ;Bytepointer to pronpt - > (with
.IXT >':W; ;carriage return)

RT: JSR (I FRI"T

FS. =0

TMP=-167

. END I ROL'T

; + + ++ +. + +++ + +++ + + +++ +++ ++ + ++
; + +

+ END PROMPT.SR +
; + +

126

. + +

+ REVERT.SR +
+ '' CREATED 15 JULY 1980; REV 01 **** +

Prograim RLVERT.SlR is called from MNITOR.F'R and always returns
to L1,(, '1ccC 1" CLI. This program~ is called by thce user entering'
"-L" anywhiere in the line that follows a prompt. There are no
parameters or argui-ents that are passed via R1EVERT.

.TITL REVERT ;Program name - Revert to CLI

*Et!T REVERT ;Enables outside entry into this
program

.TXTM 1 ;Packs ASCII strings left to right

.EXTU ;Undefined variables are treated
;as External Displacement variables

.EXTN I1 ;Provides some FORTRAN initialization

.NREL ;Normal. relocatable space starts

FS.

127

NOTIFY USER O1 RETURN TO CLI

REVERT: JSR C .FARL

SUB 1, 1 ;Load default mask
LDA 0, NOTEA ;Load bytepointer to message
. SYSTM
.WRI, 21 ;Write message to channel 21 ($TTO)
JMP ERROR

ROUTINE FOR NOP!AL RETURN TO TIHE CLI

START: SYSTM
.RTII ;Normal return - no error

JP ERROR
JIP FT ;Jump to return location when crip] ete

ROUTINE TO RETURN TO TEE CLI ABNORMAlLY

ERROR: .SYSTIM
.ERTN ;Abnormal return - error

JMP ERROI

BYTEPOINTER DEt] NEI)

NOTEA: .+1*2 ;Bytepointer to message (,OTEA)
.TXT "You have returned to the local CLI mode.<15>"

RT: JSR @ .FRET

FS.=O

TMP=-167

.END REVERT

; + +

+ END REVERT.SR +
+ +

128

CC

C ++ ++ ++ + +++ ++ ++ ++ ++++ + ++++ ++

C + +

C + GETRSPS.FR +

C + * CREATED 8 AUGUST 1980; REV 00 **** +

C + +

C + + + + + + + +++++ + ++ + + ++ + + + + ++ + +

C
C--

C ---
C
C **********

C
C Program GETRSPS.FR is called by MONITOR.FR and returns to

C MONITOR. Its sole function is to read the selected action file

C (seeking that line that begins with the control character "I" in
C column one (1)) and store up to two (2) possible responses that

C are expected from the "system" when intercommunication is taking

C place.
C
C The call to GETRSPS is as follows:

C
C CALL GETRSPS (INTRY,IRSPI,IRSP2,IlSSZ,T2SSZ)

C
C (Integer) INTRY is the user inputed channel number of the

C selected action file and is the only parameter passed from

C 1ONITOR to CETRSPS. The remaining parameters are returned from

C GETRSPS to MONITOR. They are:

C

C IRSPI - one-dimensional array containing first response,
C if any

C IRSP2 - same for second response, if any
C IISSZ - integer that indicates size of IRSP1

C I2SSZ - sjame for IRSP2

C
C

C
C---

C ---

129

C
C PARAMIERTER MDIMlIl is the size of the onv-dimensional comrIaLI *

C sequco-e array. MDll.13 is the size of the one-dimensional
C response arrays.

C

PARAIIETER 11DIMI = 82, MDIM3 = 40

C
C * GETRSPS receives an input channel and returns the first and **

C second responses (if any), as well as their sizes.

C
SUBROUTINE GETNSPS (INCHAN,IlISTRSP,1 I2NDRSP, ISTSZ,I2NDSZ)

C
C * IINITAR is an initialized array that stores the com:!!and **

C sequence line as read from the action file. It parallels the

C use of IACTFILE in MONITO10.

C

DIMENSION INITAR(DTMI), IlSTRSP1(DIM3), 12NDRSP(IDIm)

C
C ** Characters used for comparisons and decisions are data- **

C initialized. They must therefore be declared COMN-ON.
C

CO.MON /1KONST/ KLTRI, KSPACE, KOMIMA

C
DATA KLTRI,KSPACE,KONMA/ "<111><40>","<40><40>","<54><40>"f/

C

C ** Since the response arrays may be eimpty, they must be **

C cleared. Tlhen, if no responses are provided, the expected

C response will be blanks or spaces by default.

C
DO 1002 JJ = 1, MDIM3

IISTRSP(JJ) = KSPACE
12NDRSP(JJ) = KSPACE

1002 CONTINUE
C

C * Read a line out of the action file and begin search. **

C

1004 READ (INCIlAN,1006) (IINITAR(II), II = 1, MDIMl)

1006 FORMAT (82AI)

C

130

C ** If the control character "I" is not encountered, read the *

C next]ine of the action fi until such a line is encountered.
C (NO T E : Each action file must have a line wJth control

C character "I" or CETRSPS will generate an error condition.)
C When the desired line is encountertd, begin searching for a

C response in column nine (9) and beyond. If nothing is there,

C return to the calling program. If a separator comma is
C encountered, there are two responses. Cet the first and then

C get the second. Otherwise, get the first response only and

C return to the calling program.
C

IF (IINITAR(l) .NE. KLTRI) CO TO 1004
DO 1008 ISUBI = 9, IDITl

IF (IINITAR(ISUBI) .EQ. KSPACE) GO TO 1014

IF (I1NITAR(ISUBI) .EQ. KOM1iA) GO TO 1010
I1STRSP(ISUBI - 8) IINI]AR(ISUBM)
IlSTSZ = ISUBI - 8

1008 CONTINUE
C
C ** Begin the search for the second response, if any. Return **

C to the calling program when completed.

C

1010 IPISUBI = ISUBI + I
DO 1012 ISUB2 = IPlSUBI, 1IDIMI

IF (IINITAR(ISUB2) .EQ. KSPACE .OR. IINITA(ISUB2)
+ •EQ. KONNA) GO TO 1014

12NDRSP(ISUB2- ISUBl) = IINITAR(ISUB2)

12NDSZ = ISUB2- ISUBI

1012 CONTINUE

C
C
C ** Before returning to the calling program, the pointer to the *

C action file must be reset to the beginning of the file. FSEEK
C resets the pointer to the beginning.
C

1014 CALL FSEEK (MTClIAN,O)
C

RETURN
END

C
C--
C--
C
C + + + + + ++ +

C + +

C + END GETRSPS.FR +

C + +

C .+ ++ +

C
C ---

C --

131

. . . .4. 4." . 4- . .4. . .- . . .- . . .

; 4- +

+ CNVRT.SR +
+ * CREATED 15 JULY 1980; REV 04 **** +

; + +
; 4- +4 . .- . 4. . .- . . 4. . . .- 4

Program CNVRT.SR is called from MONITOR.FR and returns to
MONITOR. It is called after GETKSPS.FR and serv'S to conv(ert
the FORTRAN array storage to assembly language stora-e. Fo example,
the character "A" is stored in FORTIRAN' array IRSPI as <101><40>,
whereas the same character is stored in assermibly language as
<0><101>. Thus, this program sinply converts bet~w(en the two.
The call to CNVRT is as follows:

CALL CNVRT (IRSPI,IRSP2,11SSZ,12SSZ)

IRSPI and IRSP2 are one-dimensional FG, RTRAU: arrays that arc passed
from MONITOR to CNVRT. They contain the rc:-ponses as fou,,d bv
the program CETRSPS. IISSZ and 12SSZ are the size of the response
arrays, and are parameters that are passed frow C'VRT to EON1TT A.
Upon completion of CNVRT, the assembly langua,,e responses and their
sizes are stored in BUF1, BUF2, .FBl, and .FB2, respectivly.
Subsequent programs then use these locations for comparison

purposes, when checking for appropriate responses.

.TITL CNVRT ;Program name - Convert

.ENT CNVRT ;Enables outside entry into

.ENT .BUFl, .BUF2, .FBI, .FB2 ;this program and these locations

.TXTM 1 ;Packs ASCII strings lcft to right

.EXTD .FSUB, .FREDI ;FORTRAN runtime library routines iust

;be decleared external dispiacements

.EXTU ;Undefined variables are treated as
;External Displacement variables

.EXTN .1 ;Provides some FORTRAN initialization

132

.ZREI, ;Zero relocatablc space starts

.FBI: 0 ;Store for the size of first response

.FB2: 0 ;Same for sccond response

.BUFI: BUFI ;Buffers that contain responses may be

.BUF2: BUF2 ;addressed indirectly via these location

.NREL ;Norwal relocl.-2ble space starts

FS.

ESTABLISH THE ARRAYS PASSEl) IN AS DU!U.,'Y ARGUI'ENTS

CNVRT: JSR 0 .FARL

JSR @ .FRED ;Redimension an array, passed as dummy

ARY21N ;argument. This is array sjecifier

@ STORA+1 ;This is array size -- dtrm,; arguilent

STOR.A+4 ;This is three word sta,," '- ccifier

JSR 0 .FRED
ARYIIN ;Savie for the other array

@ STORA+O
STORA+ 7

STORE SIZE OF RESPONSES

LDA 1, OTMP+3, 3 ;LG.u size of second array from

STA 1, .FB2 ;FORTRAN stack- store in .FB2

LDA 1, C'ITP+2, 3 ;Sante for first array, but

STA 1, .FBI ;storc in .FBI

133

SELECT EACH ELEMENT OF TILE FIRST ARRAY

LDA 0, MIN12SUB ;Load subscript one

STA 0, THP+12, 3 ;Store on stack

JMP STRTI ;Start iterations

INClS: LDA 0, TIW+12, 3 ;On repeated passes, get the
INC 0, 0 ;last subscript and increment it

STA 0, T1IP+12, 3 ;Store new subscript

STRTl: LDA 1, @TMP+2, 3 ;Load maximum subscript
SUBZ 0, 1, SNC ;If maximum exceeded,
JNP NXTRSP ;start same type iteration on next array

JSR @ .FSUB ;Otherwise, get the array element
3 ;Number of arguments for library call

STORA+7 ;Stack specifier for first array

STORP+I ;Temporary location for FSUB result
STORA+12 ;FORTRAN address of subscript

CONVERT FROM FORTRAN TO ASSEMBLY LANGUAGE STORAGE

LDA 0, @TMPP+I, 3 ;Load selected array element

LDA 2, MSKSAP ;Delete second byte, strip parity from
ANDS 2, 0 ;first byte, and swap bytes
STA 0, @BUF1PTR ;Store result in BUF1

LDA 1, BUFIPTR ;Load pointer to BUFF1
INC 1, 1 ;Increment and store the new

STA 1, BUFIPTR ;pointer

JMP INCIS ;Continue the next iteration

ROUTINE TO RETURN TO THE CLI ABNORMALLY

ERROR: .SYSTM
.ERTN ;Abnormal return - error

JMP ERROR

134

DEFINE INITIAL SUBSCRIPT SIZE FOR BOTH ARRAYS

MIN12SUB: 1

REPEAT TIE ABOVE PROCEDURE FOR THE SECOND ARRAY

NXTRSP: LDA 0, MIN12SUB

STA 0, TMP+12, 3

JfP STRT2

INC2S: LDA 0, TMP+12, 3

INC 0, 0

STA 0, TMP+12, 3

STRT2: LDA 1, @TMP+3, 3

SUBZ 0, 1, SNC
JMP RETN ;Return to calling program

JSR @ .FSUB

3
STORA+4

STORP+2

STORA+ 12

LDA 0, @TMPP+2, 3
LDA 2, MSKSAP

ANDS 2, 0

STA 0, @BUF2PTR ;Store result in BUF2

LDA 1, BUF2PTR

INC 1, 1

STA 1, BUF2PTR

JMP INC2S

135

; DEFINIE POI I Ir!,S, VxizA! py.FS, AM!) IUII t,

NSKSAP: 077/00 ;Mask for rtrppig parity, dul tin,;
;second byte

BUFl PTR:EI'F1 ;Poiiter to DUF!

BUF2'TR: BUI2 ;Pointer to BUF2

BUFl: . BLK 40. ;Define buffer izes
BUF2: . BA 40.

RETN: JSR C .FRFT

SPECl'Y TEE, ARRAYS

ARY2LIN: 3 ;This is - 2*(numnber of subsci i ;,ts)+l
401 ;ThIs is - 400"'l+l ,]ent.:-i ;.nd t\pe]I

N!IJi 2SU ;This is lower subscript si70

CIS]ORA43 ;This is higher subscriit size

ARYIIN: 3 ;This is the same for first ;arrc'v
401
MIN] 2SUB
CISTOlbU+2

DEFINE STACK PARANTFS

FS.=17 ;Frame size for all stack variatlcs.

TMP=-167 ;Middie of the us-er's stack
STORA=200 'I'P
TMPP=T.P+12 ;First word available for temporary

;storage
STORP=STORA+ 12

.END CNVPT

.+ +

+ END CNVRT.SR +

* + +

136

C - - - - - - - - - - - --- - - - - - - - - - --- - - - - - - -- -

C ----------------------------------- - ---
C
C + ++ + + + -+ + . + + + +. + + . . + + +

C + +
C + WRItISYSTY.FR +
C + *** CREATED 8 AUGUST 1980; REV 00 ****+

C + +
C .+ . .. 4- . ., 4. . .- . + . . + + + + + + + +

C
C---
C--
C

C
C Program .'RITSYSTM.FI, is called by .ONITOR.FR and returns to
C MONITOR, whenever a command sequence from Zin action file is
C ready to be sent to the "system. WRITSYST, provides a
C transition to and from an assembly language subroutine that
C actually transmits data to the "system." The call to
C WRITSYSTH1 is as follows.
C
C CALL WRITSYST11 (IACTFILE, NRTMSTINDX,$602)

C
C IACTFILE is one line from the action file that is to be sent
C to the "sys;tem." NRThSTINDX is the size of the one-dimensional
C array IACTFILE, and $602 is the return line nur.iber in MONITOR
C that will next be executed upon return from 1,WITSYS.M. All
C parameters are passed to WRITS SIM from ,11ONITOP.
C
C ***** ****

C
C ---
C---

137

C
C U1',I I.y'Y rec 1' : \ v n 1 put array, the di,:elns ion of th,' t
C array, and an as,; g-d dla;ny return variablc.
C

SUBUO',Iu' I U :!R 1 TSYS;TM (I i: I At$PAY , Il D IM'AP., i 1 DUMRTN)
DIl.;LI:SloIONI;ARRAY(1IDI:AR,)

C

C WPSYS actuailly transmits the contents of 1N1ARRAY (of size *
C IN1DIM:AJ,) to the "system."
C

CALL Wi SYS (IN1ARRAY, I1DII.IAR)

C
C ** Return to the statement number passed in IIDUMRTN **

C
RETURN IIDU;MRTN
END

C
C---
C--
C
C + +++ + + + + +. .. 4. ++ ++ + + . .+ + + ++ +. . +
C + +
C + END WRITSYSTM.FR +
C + +
C . . . + . .. 4- + + +. + . . 4- . . -. .. 4 + +

C
C--
C--

138

; + +

; + WRSYS.SR +
+ **** CREATED 15 JULY 1980; REV 03 *** +

; + +

Program WRSYS.SR is called from UR1ITSYSTj.FR and returns to
WRITSYSTM1. Its sole function is to tran:mit data to the "systenm."
The data is aliw-ays a corixiiand of the action file. The call to
WRSYS is as follows:

CALL WRSYS (INIARRAY, IIDIMAR)

INIARP1AY is one line from the action file that is to be sent to
the "system." IIDIA R is the size of the one-dimcntional array
INIARRAY. Both these parameters are passed from WPITSYSTM to

WRSYS.

.TITL WRSYS ;Program name - Write to System

.ENT WRSYS ;Enables outside entry into this
;program

.TXTM I ;Packs ASCII strings l(ft to right

.EXTD .FSUB, .FREDI, .LD1 ;FORTRAN runtime library routines must
;be declared external displacements

.EXTU ;Undefined variables are treated as
;External Displacement variables

.EXTN .1, .ASUSP ;.I provides some FORTRAN initialization
;.ASUSP is a task call for suspension

;and must be declared external normal

.NREL ;Normal relocatable space starts

FS.

139

ESTABLI SH! Tilil A1RRAY PASSED IN AS DUMMY ARGUMENT

W! S YS :JSR C FAKA,

JSR @ .FRlD ;Redimension an array, passed as dumrry
ARI argumen t .This is array specifier

C STORA+O ;This is ar,,ay size - dui-umy arguiment
STORA+2 ;This is three word stack specifier

SELECT EACH ELE'MENT OF THE A!RRAY

LDA 0, LOUSUPtl ;Load subscript one
STA 0, 1111+5, 3 ;Store on stack
J11P START ;Start iterations

INCSUB: LI)A 0, TMP+5, 3 ;On repeated passer, get the
INC 0, 0 ;last Fubscript and incremecnt it
STA 0, TVP+5, 3 ;Store new subscyipt

START: LDA 1, QT1MP+l, 3 ;Load ma-ximum subscript
SUBZ 0, 1, SNC ;If maximum exceeded,
JMP RET ;return to calling program

JSR 0 .FSUBJ ;Otherwise, get the array element
3 ;Nuiaber of er-umcnts for library cell
STORA+2 ;Stack specifier for the array
STORP+l ;Tcmporary loca~tion for I'SUB result
STORAi+5 ;FORTRAN address of subscript

CONVERT FROM FORTRAN TO ASSEMBLY LANGUAGE

LDA 0, QTMPP+l, 3 ;Load selected array element
LDA 2, 11SI:IT ;Delete second byte, strip parity from
ANDS 2, 0 ;first byte, and swap bytes

OUTPUT CHARACTER TO SYSTEM

SKPBZ TTOI ;If the output line (channel device $'YTO
JMP .-1 ;is busy, try again
DOAS 0, TTOI ;Otherwise, output the character
JMP INCSUB ;Contimue the next iteration

DEFINE VARIABLY'S

CR: 15 ;Carriage return is octal 15
LOWSUB: 11 ;9 decimal - subscript that starts

;action file text
MSKIT: 077400 ;Mask for stripping parity, deleting

;second byte
TSKPRI: 0 ;MONITOR's task priority
MINSUB: I ;The lower subscript starts at one

1 40

SPFCIFY TIlE ARRAY

ARYk: 3 ;This is - 2*(num;ber of subscripts)+l
401 ;Thi s is - 400"1+1, lcngtn=z and type =1
MINSUB ;This is lower subscript size
JST(IA+] ;This is higher subscript size

OUTPUI CARRIA(;E IETURN, SUSPEND 1!ONITOR , AND RETURN

RET: LDA 0, CR ;Load carriage return
SKPBZ TIOl ;Output it when $°1TO1 not busy
JMP .-I
DOAS 0, TT01

LDA 0, TSKPRI ;Load MONiTOt task priority
.ASUSP ;Suspcnd NONITO"- task SYSIN will

;ready MONITOR

JSR e .FRET

DEF NE STACK PARAMETERS

FS.=7 ;Frame size for all stack variables
TP=-167 ;Middle of the user's stack
STOPA- 200+T.'NP
T11PP=T1MP+5 ;First word available for temporary

;storage
STORP :STORA+5

.END WRSYS

; + +

+ END WRSYS.SR +
+ +

1 41

C--.

C
C + q4. 4++ -++ A + 1 -

C + 4

C + WRITLOCAI.. FR +
C + * CREATED 8 AUGUST 19,0; REV 00 *-**+

C + +
C ++ + + + + + + + + + + + + ++ + + + + + 4, + +

C
CC

C
C
C
C Program URITLOCAL.FR is cil]ed by INONITOR.F R mnd returns to
C MONITOR, whencvr a corr;nd s,.quenco frovm on ction file is
C ready to be sent to the "local" termina LpIly
C writes a string contained in array IN2ATI2:AY to the 'locaL'"
C terminal The call to ,RUITLOCAL. is as fo lows:
C
C CALL WRITLOCAL (IACTIFLJ:,?IM.I ,$602)
C
C IACTFILE is one line froi.i the action file that. i ' to be sent
C to the "local" terminal. NBIV1 is the si7u of tie onc-dirntiooo]
C array IACTFILE, and $602 is th- -(turn line ii,Iu.er in ,,lTO!,<
C that will be next executed upon return fro-, ,) 1?LUL. Al!
C parameters are passed from IC1;IO, to UA'IT.OCAL.

C
C A-*-k *
C
C

C---

142

C
C WRITLOCAL receives an input arriy, the dimension of that *

C array,and an assigned di uilly return variable.
C

SUBROUTINE URITLOCAL (IN2ANPAY,I2DI4AR, I2DUNRTN)
DIMENSION IN2A)RRAY(12DINAR)

C
C * The contents of the action file line are written to channel **

C 10, the "local" terminal device ($TTO).

C
WRITE (10, 2001) (IN2ARRAY(Jl), Jl = 3, T2DIIMAR)

2001 FORMAT (SOAl)
C
C ** Return to the statement number passed in I2DUNRTN. **
C

RETURN I2DUHRTN
END

C
C---
C---
C
C + + + + ++ ++ + + + + + + + + + + + + + + + +

C + +

C + END WRITLOCAL.FR +
C + +
C + ++ +

C

C ---- -- ------------------ ---- -- ------------ -- -- -- -- -- -- -- -- -- -- -- --------- -------- --

143

C - - - - -- --- - - - - - - - - - - - - - - - - - - -- - - - - - - - - --- - - ---

C-

Ci. ++4 + +

C + +

C + READLWR1TS. FR +
C + * CREATED 8 AUCUST 1980; REV 00 ***A+

C + +
C + 4 + A + + + + I + + + + + + + ++ + + + + + + + + +

C

C---
C ---

C

C

C
C Program READLIIRITS.FP. is called by MONITOR.FR and returns to

C MONITOR, whenever a command sequence from an action file
C indicates that something is to be read from the "local" terminal

C and a carraiage return is to be sent to the "system."
C READLKRITS provides a transition to and from an assembly

C language subroutine that actually reads data froii the "local"

C terminal and writes a cairrage return to the "system."
C The call to READLURITS is as follows:

C
C CALL READLURITS ($602)

C
C The $602 is the return line number in MONITOR that will next

C be executed upon return from READLURITS.

C

C ** ***'c***

C

C--

C--

C
C ** READLWRITS receives an assigned dummy return variable. **

C

SUBROUTINE READLWRITS (13DUIIRTN)

C

C ** RDAWR actually implements the read and write functions. **

C

CALL RDAWR
C
C ** Return to the statement number passed in 13DUIIRTN. **

C

RETURN 13DUMRTN

END
C
C--
C --
C
C ++ ++ . . + + . + + ++ + + + + + + + + + +
C + +
C + END READIWRITS.FR +

C + +
C .+ + ++ + + + + + + + +.+ +.+ + + + + + + + + +

C

C--

C ---

144

; + +

+ RDAWR. SR +
+ * CREATED 3 JULY 1980; REV 03 **** +

; + +

Program RDAWR.SR is called from READLWRITS.FR and returns to
READLWRITS. Its sole purpose is to await any keyboard input

and then transmit a carriage return to the "system." This

routine is only called during LOGON processing. There are no

arguments or parameters that are passed via RDAWR.

145

.TITL RDAMR ;Progrna name - Read And Writ(

.ENT RDAWR ;Enables outside entry into this
;program

.TXT1M I ;Packs ASCII strings left to right

.FXTU ;Undefined variables are treated
;as External Displacement variables

.EXTN .1, .ASUSP ;.I provides some FORTRAN initialization
;.ASUSP is a task call for suspension

;and must be declared external normal

.ZREL ;Zero relocatable space starts

.ER: ERROR ;Access to ERROR may be gained via
;indirect addressing to this location

.NREL ;Normal relocatable space starts

FS.

WAIT FOR KEYBOARD INPUT

RDAWR: JSR @ .FARL

RERD: .SYSTM

.XCHAR ;Get input character from keyboard
JMP @ .ER

146

SEND TAKRIA(I. REWUN TO '[TOI

,DA 0, CPR ;Load a carriage r.turn

.SYST'

.PCIIA' ;Output carriage rt, urn to $T'f1
iMP (. F!

SKPPZ 'ITO] ;Is $1101 busy?
JMP .- I ;Yes - try a;ain
DOAS 0, TTO] ;No - output carrie return to $TTOI

SUSPENI) T! TAIM' IiO170I01 TO ALLON SYSI N TO EX.ROUTE

LDA 0, TSY, PRI ;LoAd !ON] lO,'s task priority (0)
.ASUSP ;Suspend IN 70ITO0 uitj l readied in

;task SYSIN:

JMP RTIN ;Jump to return location when c ,iplete

DEIN E VAR1ABLFS

TSI'PPI: 0 ;MONITOR's task priority is zero
CR: 15 ;A carriage return is octal 15

ROUTINE TO RETURN TO TIlE CLI ABiNORMALLY

ERROR: . SYSTM
.ERTN ;Abnormal return - error
JMP @ .ER

RTN: JSR 0 .FRET

FS .=0
TMP=-167

*END RDAWR

." ." . . .-+ . 4 +- +

; + +

+ END RDAWR.SR +
.+. +

147

C
C + 4 + + + + ++ + + + + + + + + + + + + + + + +

C + +
C + SENDF LE. F, +
C + * CREATED 8 AUGUST !980; REV 00 ****+

C 4 +

C + + + + + +++ ++ ++ +

C

C--

C---
C
C***** *
C

C Program SENDFILE.FR is called by IIONITOR.FR and returns to
C MONITOR, whenever a commnand sequence from an action file

C requires a "local" disk file to be sent to the "systen."
C SEfNDFILE uses the RDOS file CLI.CN to "send" action file commands
C ro the "local" system. Thus, the action file cocmmnand is inserted

C into CLI.CM and thcn a program swap takes place to execute that

C command. When swapping takes place, functions within tasks are

C disabled (such as .IDEF). Therefore, the task SYSIN is inactivated

C (killed) and reactivated before and after the swap - program
C EXCLI.SR. Finally, program GETFILE.SR actually transmits the

C data retricved from the "local" disk and sends it to the

C "system." The call to SENDFILE is as follows:

C
C CALL SENDFILE (IACTFILE,NDIMl,$602)

C
C IACTFILE is one line from the action file that is to be

C acted upon by the "local" system. 11DIMI is the size of the

C one-dimensional array IACTFILE, and $602 is the return line

C number in MONITOR that will next be executed upon return from
C SENDFILE. All parameters are passed to SENDFILE from MONITOR.

C
C

C

C---
C---

I
148

C
C SENDFILE receives an input array, tLhe dimension of that **

C array, and an assigned dummny return variable.
C

SUBROUTINE SFNDFILE (1IN4ARRAY, I4D!I.AR, I4DUMRTN)

C ** SYSIN.SR is the task program that monitors "system" input **
C and was activated by MONITOR. As it is to be killed and then
C reactivated, DG FORTRAN required that it be externally defined.
C

EXTEIRNAL SYSIN
DIMENSION IN4ARRAY(14DIM1AR)

C
C * This call creates file CLI.CM. If it already exists, an
C error of 12 is returned in MERR. If the call is okay, an
C error of 1 is returned. Any other error is printed out for
C reference. This insures that CLI.CN is available.
C

CALL CFILW ("CLI.CM",2,KFRRl)
IF (KERRI .NE. 1 .AND. KERRI .NE. 12) TYPE "KERRl IS ",KERRI

C
C ** This call opens file CLI.C11 on channel 25. State the error **

C condition if not opened properly.
C

CALL OPEN (25,"CLI.CM",2,KERR2,32)
IF (KERR2 .NE. 1) TYPE "KERR2 IS ", KERR2

C
C ** Insert command sequence from action file into CLI.CM. **
C

WRITE (25,4001) (IN4ARRAY(KI), (l = 3, I4DI1AR)
4001 FORMAT (I , SOAI)

C
C ** Close CLI.CM so it can be deleted in EXCLI.SR, after it is **
C no longer needed.
C

CALL CLOSE (25,KERR3)
IF (KERR3 .NE. 1) TYPE "KERR3 IS ", KERR3

149

C
C ** Before execut ing the swap (iXCLi), inactivate SYS iil
C SYSIN is the only task with priority one (1).
C

CALL AKILL (1)
C

C ** EXCLI swaps to level. two (2) to execute the instruction

C just inserted into CLI.C11. l,evel two (2) is the RDOS CLI.

C Upon copqletion of the swapped program, conLrol returns to the

C next instruction in this program.

C
CALL EXCLI

C

C ** Reactivate SYSIN just as it was before the swap.

C

CALL ITASK (SYSIN,10,1,KERR4,1)

IF (KERR4 .NE. 1) TYPE "KERR4 IS ", KERR4

C
C ** CETFILE.SR transmits the data on file QQVV to the "system."

C

CALL GETFILE
C
C ** Return to the statement number passed in I4DUIRTN. **

C
RETURN 14DUHIRTN

L14D

C

C--
C---
C
C ++ ++ ++ + + + + ++ + + + + ++ 4 +++ 4 + + + +

C + +

C + END SENDFILE.FR +

C + +
C .++ . . . + + + + + + + + + +

C

C---
C--

b 150

+ EXCLI.SR +

+ A*CREATED 22 JULY 1980; REV 01 * +

4 + +

Program EXCLI.SR is cn 1led from.- SENDEIL.17R anid RCV~I
and retUrl '; to IDVLEand/or REEF I h icilever pro','rz111
cal led EXCLI Inst .The purpose of EXC:Jl is, to executc thc
RDOS CLI on level two (2) by swappir, the CLI in and s%)apping out
EXCLI . A co-mma~ind f rom the a ct ion f ilIe has bee~n i nser ted into
CLI. CM by eit her SEIN)VJ LE or RLCEWIF1E; this Lewap executes
these commands. FXCLI also appends a POP cormmand in the CLI .CM
file, ini order to return to levcl one (1) -- the program-. EXCLI -

upon complet ion of the commnand sequknce inserted into CLIX.CN
There are no arg;uments or parameters that are passed via EXCI..

.TITL EXCLI ;Program name - Execute the CLI

.ENT EXCLI ;Enables outside entry into this
program

.TXTDI I ;Packs ASCII strings left to right

* EXTU ;Undefined variables are treated as
External Displacem,.ent variables

.EXTN .1 ;Provides some FORTRAN initialization

.NREL ;Normal relocatable space starts

FS.

151

ADD TilE t1I' COMM'iAND TO FILE CLI. CM

EXCLI: JSR C .FARL

SUB I,1 ;Load the default mask
LDA 0, CLIC;M ;Load the bytepointer to file CLI.CM
. SYST.
.APPENID 23 ;Open CLI.CM for appending on channel 23

JMP ;R

LDA 0, CMANM ;Load bytepointer to additional co'm.iand
LDA 1, PCOUNT ;Load number of bytes to be written

* SYSTtI
.WRS 23 ;Write the added command to CLI.CM,
JM F11
. SYST111
.CLOSE 23 ;Now close file CLI.CII

JMP ER

CALL SUAP TO EXECUTE 1l1E CLI

LDA 0, CLISV ;Load bytepcinter to file CLI.SV

SUB 1, 1 ;Load zero - indicates swap

SUBZL 2, 2 ;Send no message to swap program

. SYSTM

.EXEC ;Swap to CLI on level two (2)

JMP ER

JMP RT ;Jump to return location c when complete

ROUTINE TO RETURN TO THE CLI ABNORMALLY

ER: .SYS TM

.ERTN ;Abnormal return - error
JMP ER

DEFINE BYTEPOINTERS, ETC.

CLISV: .+1*2 ;Bytepointer to file CLI.SV

.TXT "CLI.SV"

CLICM: .+l*2 ;Bytepointer to file CLI.CM

.TXT "CLI.CM"

CMAND: .+l*2 ;Bytepointer to POP command

.TXT ";POP<15>"

BCOUNT: (BCOUNT-CMAND)*2 ;Number of bytes in POP command

152

; FJI.:1I)'lF,I: CLI .CM BI'ORE ' iURNI FF TO CAL. I G 1RO(LAN.

RT: LDA 0, CLICN ;Ioad bytepointer to file CLI.CM
* SYSTrI
.DIE],LT ;Delete file CLI.CI
JiP ER

JSR @ .FtlT

FS.=0
THP=-1 67

.END EXCLI

; + +

+ END EXCLI.SR +
; + +

S ++ + ++ + ++ + + + + + ++ + + + + + + ++4

153

;~~~ ~~ . . . A, + + + + 4 + + + + + + +

; + +

+ G ETFIE. SR +
+ **** CRLATED 26 JULY 1980; REV 02 +

; + +

Progrm, .. GETFILE.SR is called frou SENDFILE. FR and returns to
SEN OFI EL. It is call(d after EXCLI has placed a disk file of

the "local" system into file QQVV. It gets this f ile and
outputs it to the systesi" character by character. It calls
upon a system call to determine the User File Discription
status, which provides the size of the file. There are no
arguments or parameters that are passed via GETIILE.

.TITL GFTFILE ;Program name - Get File

.ENT CETFIIE ;Enables outside entry into this

;program

.TXTM 1 ;Packs ASCII strings left to right

.EXTU ;Undefined varaibIcs are treated as

;External Displacement variables

.EXTN .1 ;Provides some FORTRAN initialization

.NREL ;Normal relocatable space starts

FS.

154

01I'E ANID Il:) S'JAIUS OP F ILL QQVV

C~LIP] I l:JSR (j F1AM.

LDA C0, INAMC)FFI. ;Load by L epointcr to f I e QQVV
Sul, 1 , 1 ;Load diefaiult miask

S SYS TM
.COPEN 20 ;Open file QQVV on channel 26

LDA I , STRI1OC ;Load poi utcr to beginning of UYD etorc-
*SY SI I
STAT ;Get the 1JFD status of QQVV

J11P CALCSZ ;Now cnleul.,-te the size of QQV'!,

READ QQVV FY PORT? oMS ANP B END OUT,

AGNII D: I.DA 3, SZOFLE, ,Lond the size of file QQVV
LPJA 1, IYTSE ;Load the i'eof the CIS store
SUB;Z-F 1, 3 , SIX ;ITs current size oi file ,reeter

,thanl size of CUTS;?
J1111 LFSIRD ;No -read QQVV for t lie 1 art t ir:-e

STA 1, WRSS' ;Yes -read at l'-ast twe ive
LDA 0, PISCUTS ;Load bytepointer to htif focr CE'TS
. SYSTM
.RDS 20 ;Read a port ion of QQVV into thiTS

JILIP ER

JSR SFNDIT ;Send this portion. out

LDA 1, BYTSZ ;Load the size of the CNTS buffer
LDlA 3, SZOI FL ;and the current size of QQVV not read
SUP, 1 , 3 ;Find the difference bet'eon the(
STA 3, SZOITL ;two and store in SZOFFL
iMP AGEDL ,RetUrn1 to road the next portion,

LSTP.D: LIMA 0, PT, C1TS ,Load the bytepointer to CETS
LDA 1 , S ZO0FTL ;Load the current si7.e of QQV
STA 1, WRSSZ ;Store this si7ec
.SYSTM
.RDS 26 ;Read in the last portion of QQVV
JMP ER

JSR SLUADIT ;Send this portion also

LDlA 0, CR ;Load a carriage return

SKPB7. ITT0 ; If the out put I ine i, not bury,
imp .-I ;send a carr i.,e returni as the last
DOAS 0, TTO1 ;char cter

ONCE COMPLETE, CLOSE AN4D DELETE QQVV

TRYCLOS:LDA 0, NAMOFFL ;Load bytepointer to QQVV

.SYS TM

.CLOSE 26 ;Close file QQVV
JMP CHKERR ;Check to see if there is an expected

error
.SYS TM
.DELET ;If not, delete QQVV
J14P ER

JHP RETERN ;Then return to the calling program

CHKERR: LDA 1, .ERFIU ;Is QQVV still in use?
SUB 2, 1, SNR ;Compare to error code ERFIU
JMP TRYCLOS ;Yes - return to try tor closing again
JM' ER ,Otherwise, state the unexpected error

ROUTINE TO RETURN TO THE CLI ABNORMALLY

ER: .SYSTM
.ERTN ;Abnormal return - error
J14P ER

DEFINE VARIABLES, BYTEPOINTERS, AND BUFFERS

.ERFIU: ERFIU ;ERFIU = 60, file in use

NAMOFFL: .+l*2 ;Bytepointer to file QQV-V
.TXT "DPOF:DIALOG:QQVV"

STRLOC: UFDSTR ;Pointer to UFD store
UFDSTR: .BLK 22 ;18 decimal UFD word store

SZOFFL: 0 ;Store for current size of file
BYTSZ: 122 ;82 decimal bytes - CNTS buffer
PTRINIT :CNTS ;Pointer to the beginning of CNTS
TEXTPTR:CNTS ;Pointer to text entries for CNTS
PTRCNTS:CNTS*2 ;Bytepointer to CNTS buffer
WRSSZ: 0 ;Number of bytes to be written

1 56

CALCU.ATE IT'E SIZE 01' OQQVV

CALCSZ: IDA 3, ZERPO ;Load zero (0)
11A I, U'JI)ST+10 ;Load the number of the last
SUB - 3, 1, SUR ;block in QQVV. Is it zero?
JMP ADONCE ;Yes - just calculate once the size

STA 1, CNTER ;No - load the number of blocks in

LDA 0, ZERO ;counter and load zero
LDA 2, Ob>.sBL ;Load the size of one block

1IILT: ADD 2, 0 ;Multiply the num ber of blocks
DSZ CRITER ;by the number of bytes in a block
JMP MULT ;Continue till all blocks are included

LDA 1, UIFDST,+ 1 ;Load the number of bytes in the
ADD 1, 0 ;last block - add to the total

STA 0, SZOFFL ;Store total in size of file
JIlP AGNRD ;Return to read portions of QQVV

ADONCE: LDA 2, UF'DSTR+l1 ;If just one block, store the

STA 2, SZOFFL ;number of bytes in size of file
JMP AGNRD ;Return to read the portions

DEFIRE VARIABLES AND STORAGE LOCATIONS

ONEDIL: 1000 ;One block is 512 decimal bytes

ZERO: 0

CETER: 0 ;Counter storage location

SAVE3: 0 ;Storage location for accumulator

SAVE2: 0 ;3, 2, 1, 0, and the carry bit

SAVE1: 0

SAV1(J : 0
SAVEC: 0

CR: 15 ;Carriage return is an octal 15

157

SEND FIlE QQVV OUT CTIARACTER BY CIIARACTER

SETIDIT: STA 3, SAVE3 ;Upon entering rout ie, store
STA 2, SAV}22 ;accumulators and carry bit
STA 1, SAVE]
SA 0, SAVEO
MOVL 0, 0
STA 0, SAVEC

LDA 1, WRSSZ ;Load number of bytes to write
MOVZR 1, 1 ;Divide the nm:,ber by two, as two
STA 1, URSSZ ;bytes will be written per iteration

REPT: LDA 0, (.TEXTPTR ;Load pointer to text character
LDA I, MSKi ;Load mask to isolate left byte
ANDS 1, 0 ;Strip parity and swap

SKPDZ TT01 ;If output line not busy, output
JlIP .-1 ;this isolated character
DOAS 0, TT01

LDA 0, @TEXTPTR ;Load same text
LDA 1, 1SK2 ;Load mask to isolate right byte
AND 1, 0 ;Strip parity

SKPBZ TTOI ;Output this character when output
JM1P .-1 ;line not busy
DOAS 0, TTOI

LDA 3, TFXTPTR ;Load the pointer to the text
INC 3, 3 ;Increment the pointer
STA 3, TEXTPTR
DSZ WRSSZ ;Have the words all been sent?
JMP REPT ;No - return and repeat for the next

;word
LDA 1, PTRIINIT ;Yes - load the pointer to beginning of
STA 1, TEXTPTR ;text buffer - CNTS

LDA 0, SAVEC ;Restore accumulators and carry
MOVR 0, 0
LDA 0, SAVEO
LDA 1, SAVEl

LDA 2, SAVE2

LDA 3, SAVE3

JMP 0, 3 ;Return to next line from location

;in which subroutine called

158

DEFINE MASKS

I;SKI 177400 ;Mask to isolate left byte
MSK2: 000377 ;Mask to isolate right byte

RETERN: JSR C .FRET

DEFINE CONTENTS BUFFER

CNTS: .BLK 122 ;82 decimal bytes of storage

FS.=0

TMP=-167

.END GETF1E

+ +

+ END GETFIIE.SR +
; + +

159

C

C +- 4 ++ ++ ++ . . .- . .+ . . 4+

C + +
C + READYREAD.FR +
C + *** CRFATED 9 AUGUST 1980; REV 00 ****+
C + +
C + ++ + + + + + + + + + + ++ + + .+.+ + ++ + + + +

C
C -- -- - - - - - - -- - -

C

C
C
C Program READYREAD.FR is called by MONITOR.FR and returns to
C MONITOR, whenever a disk file needs to be prepared (i.e.,
C created) to accept data from the "system." File VVQQ is created
C to receive the data from the "system", which will transpire on the
C next execution of task call SYSIN.SR. This latter action is

C triggered by a repeated call to open the file VVQQ, which only
C succeeds after VVQQ has been created. The call to READYREAD

C is as follows:
C
C CALL READYREAD ($602)

C
C The $602 is the return line number in MONITOR that will next
C be executed upon return from READYREAD.

C
C

C
C--
C---

160

C
C ** READYREAD receives an assigned dummy return variable. **

C

SUBROUTINE READYREAD (15DUMRTN)

C
C ** This call creates file VVQQ, that will be accepting data **

C from the "system." Data will actually be entered only when

C VVQQ is opened by SYSIN.SR.
C

CALL CFILW ("DPOF:DIALOG:VVQQ",2,IERR1)
IF (IERRI .NE. 1) TYPE "IERRI IS ", IERRI

C
C ** Return to the statement number passed in 15DUMRTN. **

C

RETURN 15DUMRTN

END

C
C--
C--
C
C .+.. +.. +.. .+.. .+ . +++.. ++ .

C + +
C + END READYREAD.FR +
C + +
C . . . ++t + . . ++

C

C--
C---

1

161

C
C + ++ - + + ++ ++ + .+ ++ ++ ++ .+ ++ ++ +

C + +

C + RECFVVI,' E.FR +
C + CREATED 9 AUGUST 1980; REV 00 *+

C + +
C + .+ + + + + + + ++ + + + + + + + + + + + + + .

C
C---
C --
C
C

C
C Program RECEVFILE.FR is called by MONITOR.FR and returns to
C MONITOR, whenever a command sequence from an action file
C requires a "local" disk file to be created to receive data
C transmitted from the "system." RE(CEVFILE uses the RDOS file
C CLI.CII to "send" action file commands to the "local" system.
C Thus, the action file command is inserted into CLI.CM and then
C a program swap takes place to execute that corand. When
C swapping takes place, functions within tasks are disabled
C (such as .IDLF). Therefore, the task SYSIN is inactivated
C (killed) and reactivated before and after the swap - program
C EXCLI.SR. Lastly, RECEVFILE deletes the temporary disk file
C VVQQ, as it is no longer needed. The call to RECEVF1LE is as
C follows:
C
C CALL RECEVFILE (IACTFILE,MDIM1,$602)
C
C IACTFILE is on- line from the action file that is to be
C acted upon by the "local" system. MDIMI is the size of the
C one-dimcntional arrray IACTFILE, and $602 is the return line
C number in MONITOR that will be next executed upon return from
C RECEVF]LE. All parameters are passed from MONITOR to RECEVFILE.
C
C

C

162

C
C RECEVHJ)IE receives an input array, the djmiension of that **

C array, and an assigned dumtiLy return variable.

C
SUBROUTINE RCEVI"ILE (IM 6ARRAY, 16DIILAR, 16DUMIRTN)

C
C ** SYSIN.SR is the task program that monitors "system" input **

C and was activated by IONITOR. As it is to be killed and then

C reactivated, DG FORTRAN requires that it be externally defined.

C

EXTERNAL SYSIN
DIMENSION IN6ARRAY(16DIMR)

C

C ** This call creates file CLI.CM. If it already exists, an

C error of 12 is returned in JERRI. If the call is okay, an

C error of I is returned. Any other error is printed out for
C reference. This insures that CL1.CM is available.

C

CALL CFILW ("CLI.CM",2,JERRI)
IF (JERRl .NE. 1 .AND. JERRI .1E. 12) TYPE "JERRI IS ", JERRI

C
C ** This call opens file CLI.Ci on channel 25. State the error **

C condition if not opened properly.

C

CALL OPEN (25,"CLT.C1I",2,JERR2,82)

IF (JERR2 .NE. 1) TYPE "JERR2 IS ", JERR2

C
C ** Insert comnand sequence from action file into CLI.CM.

C
WRITE (25,6001) (IIN6ARRAY(L1), LI = 3, I6DIMAR)

6001 FORMt4T (1l1 , 80AI)

C
C ** Close CLI.CM so it can be deleted in EXCLI.SR, after it is *

C no longer needed.

C

CALL CLOSE (25,JERR3)
IF (JERR3 .NE. 1) TYPE "JERR3 IS ", JERR3

C

163

C ** Before executing the swap (EXCLI), inactivate SYSIN. **

C SYSIN is the only task with priority one (1).
C

CALL AKILL(1)
C
C ** EXCLI swaps to level two (2) to execute the instruction **
C just inserted into CLI.CM. Level two (2) is the RDOS CLI.
C Upon completion of the swapped program, control returns to the
C next instruction in this program.
C

CALL EXCLI
C
C ** Reactivate SYSIN just as it was before the swap. **
C

CALL ITASK (SYSIN,10,l,JERR4,l)
IF (JERR4 .NE. 1) TYPE "JERR4 IS ", JERR4

C
C ** Upon return from the swap, delete file VVQQ, as it is no **
C longer required.
C

CALL DFILW ("DPOF:DIALOG:VVQQ",JERR5)
IF (JERR5 .NE. 1) TYPE "JERR5 IS ", JERR5

C
C ** Return to the statement number passed in 16DUMRTN. **
C

RETURN 16DUMRTN
END

C
C--
C--
C
C+ . . .+.+ + ++ +++ ++ + +

C + +
C + END RECEVFILE.FR +
C + +
C +++ +++++++++++ ++++++ +++++
C
C--
C--

164

+ + + ++ + + + + + + + + + + + + + + + + + +

; + +

; + TOTIJ<'1. SR +
+ **** CREATED 27 JUNE 19C0; REV 02 * +

; + +

* + + + + ++ ++ +++ + + . .. +t+ + + + + + +

Program TOTERM.SR is called from MONITOR.FR and al 'ays calls
TElNM(.OPI.SR in turn. This progrm-' transit ions the user iroiv the
; OIIlTOR Command Langua,,e to the transparent terjiial only ,,ode.
The transition is effect ed wherever the user enters "T" any-h-er
in the command line after ,CI YTOR provides its pro-Iit . The
program, in addition to Imping to 'IEI? 0P .

,
, also r moves the

"system" device codes that wvre identificd (via .IDI-Y) in SYSI',.SR.
This is necessary, since TEiXOI' identifies its own drvice codes.

Both TERUOP and SYSIN use the same device codes -- $TTOI and SfT1
There are no argu ments or parameters that are pabsed via, TOTER;].

.TITL TOTER- ;Program name - To Terminal Operation

.ENT TOTEJ ;Enables o- :le entry into this

;progra,,

.EXTD TERMOP ;Dec's prog-m name (address)
;TFRNOP.SR as external displacement
;TERNOP can now be accessed by TOTEIrM

.TXTM 1 ;Packs ASCII strings left to right

.EXTU ;Undefined variables are treated
;as External Displaceocnt variables

.EXTN .I . ;Provides some FORTIRAX initialization

165

.ZR!L0 ;Zeio relocatable space starts

ER: P, R ;Access to ERR and TERMOP ray be
.TOTI-R !:TER'MOP ;gained via indirect addreosing to

;these locat ions

.NREL ;Normal relocatable space starts

FS.

FIRST RE"OVE IDITIED) DEVICE" CODES

T(TERII:JSK C .FARL

IDA 0, DICODE ;Load device code for $TTI1
* SYS1,!h
.IRNV ;Fei LOve it from the "system"
JMP Clil'iill ;if ,i error, check to sec if

;devicc has -.lready been removed

LDA 0, D2COOE ;Load device code .T...
* SYSTM
.I RMV ;Remove it from the "system"
JMP CHKER ;If an error, check to see if

;device has already been removed

JUMP TO TERIOP.SR

JNIP 0 TOER1

ROUTIN.E TO CtHECK FOR EXPECTED ERROR

CHEER: LDA 1, .ERDI' ;Itas device been removed?
SUB 2, 1, SNIM
JMP ' .TOTIRM ;Yes - jump to TER11OP
JIMP Ci .ER ;No - state the abnormal error

ROUTINE TO RETUIRIN TO TH1E CLI ABNORMALLY

ERR: .SYSTH
.ERTN ;Abnormal return - error
JMP F *ER

166

VARIABLES DEFINED

.ERD'N!.: ERDNM ;ERDI! = 36, device not in system error

DIlCOE: Til ;$TTOI is the first device code

DCIi . :11:TT01 ;$TTOI is the second device code

JSR @ .FRET

FS.=0
TbP =--167

.END TOTEPI

. 4 i . .

; -I +

END TOTERM.SR +
+ +

167

+ ++4......f4....i+I....ii +4

* 4 1T:11-1 P 1 1,+

4 * C REATED 30 JUNIE I b820 ; REV 02 c*+

+ +

Prov r-n-, TER'1OI SR is cal led by TOTVl."M. SR, whii c is called from-

MONITOP Fl TFIZ!101 is thic tr;,i nail onl y mode ot olielation Icor

iut eiwiiun icat ion with the ' sti*''From thca "'Iccci
t ernaini, t he mode of opera t-ion !;as a t rnnsparenit t erlwu na1
connected to the 'system.*" TEIIIl)P serves as a device driver
that cnal- ic s interCOr-LUinicat ion betw~een the "local'
syste~m (dcvi ccs TTO and $'iTII) andi a "systc-." connected to it
via devices (devic'!s $TT01 and $"T111

.TITL TE7RMI4U ;Progra namle - Terminal Ope~ration

.EXTN .TASK ;Perlnitf; prog-ram to externally
;access task call TASK

*FNT TERMOP ;Enables outside entry into this
program

.TXTM I ;Packs ASCII strings left to rig-ht

EXTU ;Undefined varaibles ar treated as

External Displaccement variables

.EXTN .1 ;Provides some FORTRAN initialization

- - -- - - - - - - - - - - - - - - --168-

.z P F 11,Zero i-elocat.-ibe sp; cL, stirts

*-I ER: ERR()E Acce-SS to EPLPOR ar-id 1'TI I
N NOT 1 N TE I ;mnay Lc Pgained vii a md rcct

NOT" N U1, 2 ; add r cs ruig to t hest, Iocal i ons

. N R], ;Normal ol oc tablc isPnce -Lart.s

DEX iCE C(l),TPOL 'lADL-IE (DET) lA YOUT

Al IT: TFT I A ;Addrc-s of TTII 1 PT
A2!PCl : TTYG] A 1) ,Addreass of TTO1 DET

TTIIt.D: S T", 1 Si, ;Interrupt state 'c area - TTI11
-1 %;Ios] w(r foe- no interru!LAs
TT 111 A ,TTIJ. jitcrrupt service rot ir-P

ITO lAD: ETA 2 SA ; Interrupt state save area - TTOJ
-I ;,as word
TT C1 ,TTOI interrupt service routirue

address

ADDITIONAL VARIABLE.S FOR STTI1/ STIGI. HANDLERS

D1COI)B: TT11 ;Device code -TTIl

D2 CODE: ITO-'(1 ;IDevice cod, TIl

STA I A : B'K I0 ;Eight word state save area - T711
STA2 SA: 1, ELK 10 ; Samne -- TTO1

169

I'S.

TEI': JSI' C YAI,!

SUB I , I ;Load default rmc ok
LI'A 0, C .1OTI ;L0oad byLtCjin~tkr to ITIEl
. S ySTII1
.WRL 21 ;WritLe IEUTEl to TiC)
J1,) C .1-R

LZ7FINII IVICES $'ITI1/;TTO1

DEIDEV:LPDA 0, DI CODE ;D~efinoe TTJ 1 vin the JDDLF
LPA 1, A1I)CT ; call1, us ing device code

SYSTII ; TTI1 and its DCT addre5 -

it I. P .ER

DI'F21)FV:IDA 0, D2COTDE' ;Define TTGI vial the IT)EF
LDA 1, A2DCT ;call, uFrinc- device code TTOl
.SYSTII ;and its MUT - ddrcss

JMP C . ER

DEFTE LILE-1RD AS AN ASYIC11ROiJOUS TASK

DEFTASE :1 HA 0, IDAr;I)PR ;Load the ID and priori-v of
LDlA I , TSKEPTR ; task LIVERD:) load task poinrter
. TAS K ;to LINERD

JiM 0 .11

II CES "'TT 1/ $TTO1 LEFORE STARTINGC

NIOC TTII
NIOCT 101

170

FV'' 'K RFA) AND J) 'JE1 CI1 TER]'!OM/TI) TTI Pm) 110O

SYST11 ;Cet clicte froi,, II
*GCHA1I

J-11 C, . F. 1)
SYSI 1 ;rut chnr.icte!r to TTO

2 MP F .IR

LDA I , IPAn0W ;Covnp:tre ch.)Ilrctci- to
SulB;1 0, 1 , SiUp. ; If a viztch, return to
J1,11 LVT1RMOP ; the CLI.. Otlierx.,i se

SK~hZ 7101;out pit thecho nce to 77f01

I)OAS 0, ITT0

JMP 'IiTE"MPUD ; Eetur to t ermixtAi re'id/iwr i te

LRIXP I-):DA 0 , N].NOT2

Sul) I ,I

.SYSFM

.WRL 21

ROUT.TNE TO 1dLTV!iN TO 'iflL CLI NORM,?ALLY

SYS T,
R PI'l ;Norrnal return -- no error
IP FI.R

DLEFINE AUDITIDUAL VARIALEIS USED ABOVE

IDAU1DPR: 105;74+10 ;L INERD ID) is tell (arbitrary);
;pri~ority is also ten (arbitrary)

TSKLPTE LI N ED ; Second taskU is LIERO.
UPAKOi$: *I'1<0>" ;PCI1AR ind (CHAR zero out the left

171

SECW:11 TA!;--BET AM) ITk TE FKo: 'TD $T]J I I!ND $1-rol

;Thiis routine operates on a fir ,t-inffirst-out- inf fer concept.
;A single buff or is clof inc ("211.11) t hat is M3 chanrac ter,,

Ione,. (NO'i : I 1he [kUf or j F, D3 wordIs lmon, but ea-ch ~'r
;contz,.ins just (one charoc~t or due to the x. aiy Ltho reads- and
;v~ril-es 1,ack ASCII Twi) xo poiilters are defimed to
;keep track of the lzatest char pcl or entered (1lNI'TR) andW tha
lIate st character E' ' it d ((03T'Vi':) .A t h irA pointe r (C111 1TP)

;always reiims at the 1V -! mni of the buffu-r a.nd is; lised for
init-ial izztion, wh1en recquirou t% fourth pointer (;xlm)is useu Lo
1insure the huffii 100' Lii is not? i-:cceldAv entos i_ n
OeXit ins, characters P;-c tori ally , Lhis locuks as fo 1 ows:

CUTI' IVX P TI'R

; ++1++-t+±+t~ ++++++-+ /++++ ++t-++++-] -:++++++ + + + ++

IBUFF BUFF+l IBUFF±2 II F +1 31! BUF IT-13 2 :A >i F+13 3
++-1 1 ++-f +-i+.++.4 +++++++++4+ + / p++ +4-+ ++- i++ + -4- .±- + + + . +

CIIKPTR INIT

LINhRD: IDA 1 , INPTP. ;Comnpare in and out pointers
LDlA 2 , OUTiTR ;If they are the sam(-, there are
S U BY 2 , I , SNR ;no fumtler characters to print
J11w 111:RD ,Retnrn to the line reader

LDA 0,@OUTP-TR ,Otherwire, output to TTO the
.SYSC If, contents of BUFF pointed to by
SPCIIAR OUT~PUT

JllP @2 .ER

I NC 2 , 2 , Compare OUJT)'TIZ+1l BndAXPTR
LDA 3, MAXPTR ;If they are the sar-m , jump
SUB# 2, 3, SNR ;to routine to re- in Ii A1ize
JillP INTITT ,OUTFI B wi th tlie CX'B Ot hervi so,
STA 2, OUTPTR ;store new value of 051 PIrP
JMPI LINERD ;and return to the lu:5 reader

111111 LT)A 2, CliKITR ,Re-ini tial izo ' I'UT' hy storing
JMP I N If]1 -2 ;va lue of C11III'il in OUi'PTiR

172

ADDIT()iA] P0]i1 R AND NA K VANI ABLES DEFINED

NOTE .+1*2 ;Bytcpointer to NOTE1 message
.TXT "You have entered into the terminal only mode. Proceed!<15>"

NOTE2: .+12

.TXT "You have returned to the local CLI node !<15>"

OUTi'TR: BUFF ;Initialize pointers to
IEPTR: FUFF ;beginning of buffer BUFF
CUEI UTk : BUFF
PMSE: 177 ;11ask to strip parity bit

$TTl1 INTYRRUI'T SERVICE ROUTINE

TTII1NA: STA 3, USP ;Save the previous processor

STA 2, SAVE2 ;state by saving all accumulators

STA 1, SAVE1 ;and the carry bit. USP is the

STA 0, SAVEO ;User Stack Pointer, location
NOVL 0, 0 ;016 (octal)

STA 0, SAVEC

DIAC 0, TTl1 ;Input the character fromc. TTIL to
LDA 3, PMSK ;accumulator zero, and strip the

AND 3, 0 ;the parity bit in the right byte

STA 0, OINP1TR ;Put character in next empty
;buffer location

LDA 1, INPTR ;Is the INPTR at the end of BUFF?
INC 1, 1 ;Increaent INPTR to compare with

LDA 2, IIAXPTR ;MAXPTR. If they are the same,
SUB# 1, 2, SNR ;jump to check the location of

JMP CHECK ;OUTPfR. Otherwise,

STA 1, INPTR ;store the new value of INPTR

RETURN: LDA 0, SAVEC ;Restore the state of the processor
HOVR 0, 0 ;before returning to the next

LDA 0, SAVEO ;instruction in the program

LDA 1, SAVEI ;interrupted by input from TTII

LDA 2, SAVE2 ;(This could be either of the

LDA 3, USP ;two tasks of TERNOP)
JMP 0, 3

CHECK: LDA 3, OUTPTR ;If outptr is still at the

LDA 2, C1iKPTR ;beginning of the buffer BUFF,

SUB# 2, 3, SNR ;there is a buffer overflow
JMP PROBI ;potential requiring the processor

;to haltl Otherwise,

STA 2, INPTR ;store the new value of INPTR

JMP RETURN ;and then return

PROBI: HALT ;Not a recoverable errror - STOP!

173

; $TTOIINTKI'P S-,V I CE ROUTl2Er

TTO1rA: NIOC TTOI ;Id].e the device TTOl Lnd
JMP 0 , 3 ;return. No need to save the

;the processor state, as it is
;not chang-ed

ROUTINE TO IIEITURN TO TIIE CLI A)INORNALLY

ERIROR: SYSTII
ERTI; ;Abnormal return - error

RIP @ .ER

DEFINF NECEFSARY STORAGE AREA'; TO BE USED

SAVEO: 0 ;Processor save state
SAVEl: 0 ; locations
SA%11,2: 0
SAVEC: 0
KAMP: YRUIF4 133 . ;Pointer to the end of BUFF
BUFF: BOLI 133. ;BUFF is 133 worc s long (decimal)

JSR C .FRET

FS.=0
TM?='--167

END TERTIOP

+ END TERl1OI'.SR +

. . .+

174

I ------- - - - - - - - - - - - - ------ -4 + 4 4 - - * -- -- -- -- -- -- -- --

+ + 4++ +

+ SYS IN. SR +

+ *w*CkEAT1) 4 AUGUST 1980; 1 8EV 04 +*A

. ... ++- + +

Program SYSI . SR is an asynchronwus task that is act ivated via
task call,; ond nact ivate6 via task cil is. Initially, SYSIN7 is
activated by ::'N1,(0,8.11R. It is sbcun]y ntivtdanld

reactivaeci by SN ILFRand K!1IX! iLl .;i d. !1101, also
inactivates SYSIN just leore Lhf i o teterninctl icl y
roSole of operation . sysl 1' does sevuran 1 i]nysisu Itareon y.
First, it def ines device codes $110j1 zand STTI that artc not
system~ g enerated . Suconcl, SYSIN recads the iinput line froi;. the
"1system" - $T1TIl - afteor the dv edefined irt r rupt rout inon
storc the input in a buf fur. Third, SSLreadies task MUONIIGE
whenever it is su.spended. And fourth, SYMN writes to file
VVQQ whenever it -*s created by programwn 9VH. SYS I- is of
priority 1, which is lower in precedence than MOIOwhich is
of priority 0. SYSIN also has tho ident ity numiber 10. As
SYSIN is not a subroutine, there are no argrnncrts or parameters
that are passed via SYSIN.

.TITL SYSIN ;Program name - Systen , Input

.ENT SYSIN ;Enables outside entry into this
program

.EXTD .BUFl, .BUF2, FBl, .FB2 ;These storage locations were created
,by CNIVRT.SR and must be accessed by
,SYSIN. They are external displacements

.EXTN .ARDY ,.ARDY readies suspended tasks and
,miust be declared external normal

.TXTM 1 ,Packs ASCII strings left to right

.EXTU ;Undefined varinbles are treated as
;External Displacement variables

175

.ZREL ;Zero relocatable space starts

.ER: ERR ;ERR may be addressed indirectly

;via this location

.NREL ;Normal relocatable space starts

DEVICE CONTROL TABLE LAYOUT

D1DCT: AD ;Address of -TTI- DCT
D2DCT: IlAD ;Address of $TTOIl DCT

IIAD: SSAl ;Interrupt state save area - $TTIl
-1 ;Mask word for no interrupts

IlIRA ;$TTI1 interrupt service routine address

OIAD: SSA2 ;Interrupt state save area - STTOl
-1 ;Mask word

01RA ;$TTOl interrupt service routine address

ADDITIONAL VARAIBLES FOR $TTIl/$TTOl HANDLERS

CODE: TTI- ;Device code - TTII
CODE2: TTOI ;Device code - $TTOI

SSA1: .BLK 10 ;8 decimal word state save areas
SSA2: .BLK 10

DEFINE BYTEPOINTER AND NULL WORD

TMPFL: .+l*2 ;Bytepointer to file VVQQ
.TXT "DPOF:DIALOG:VVQQ"

NULL: 0 ;A null word

DEFINE THE DEVICES

SYSIN: SUB 1, 1 ;This is no operation - holds a place

DEVl: LDA 0, CODEl ;Define $TTIl via the .IDEF call,
LDA 1, D1DCT ;using device code $TTII and its
.SYSTM ;DCT address
.IDEF
JMP @ .ER

DEV2: LDA 0, CODE2 ;Define $TTOI via the .IDEF call,
LDA 1, D2DCT ;using device code STTOI and its
.SYSTM ;DCT address
.IDEF
JMP @ .ER

176

DE] J E AN ASYNCIIEONOUS TASK TO]:FAD LUEJ]: INPUT

RDLINE: LIDA 1, INPTR ;Compare in and out pointers. If
LDA 2, OUTPTR ;they are the same, there are no further

SUBf 2, 1, SNR ;characters from input
JMP CIHKDIAY ;Check a delay time-out before

;readying task 1IONITOR

I1)A 1, IDAYCNT ;Otherwise, insure time-out parametcrs
STA 1, CNTER ;are reset and initialized

EXAMINE INPUT

LDA 0, CGUTPTR ;Load the contents of outptr

INC 2, 2 ;Incrcment the outpointer itself
LDA 3, MAXPTR ;Load the maxpointer and compare to

SUB# 2, 3, SR ;outpointer. If they're equal,

J1,P RSETl ;reset pointer to beginning of buffer

SET: STA 2, OUTPTR ;Otherwise, give outpointer a new value
LDA 3, NTULL ;Load ,) null word
SUB# 3, 0, SNR ;Is the character a null?(Input)
JIP RDLINE ;Yes - throw it away and get next one

STA 0, MATPTR ;No- store character in Match Buffer

LDA 3, NATPTR ;Save this location in Full Match Buffer

STA 3, FiATBUF

LDA 1, LF ;Is character a line feed?
SUBqi 0, 1, SNR

JiMP COPAR ;Yes - compare all of Match Buffer

LDA 1, CR ;No - Is character a carriage return?
SUB# 0, 1 , SNR
JMP COMPAR ;Yes - compare all of Match Buffer

INC 3, 3 ;No - increment the match buffer pointer
STA 3, MATPTR ;Store the new value

JMP RDLINE ;Return to get next input character

RSE71: LDA 2, CIKPTR ;If outpointer is at the end of

JMP SET ;its buffer, reset to the beginning

177

; AFTER A DI.AY''i-OUT, IEADY MONITOR

REDYTS!K:L.)O; I, AT','M ;Insure nothinv is in th match buffcr
LODA 2, ;L\TSTN'I ;If sonlething is therc, coi:.pare the
SHTI-i 2, 1, SZR ;entire buffer
JITP COMIPAR

.SYSNTI ;lf not, then

.CLOSE 27 ;close file VVQQ
J11, .+1 ;If already cloised, just contjnue

LDA 0, TSKPN1I ;Load the priority of MO:NITOR
.ARDY ; Ready MO.ITOR
JMP RDI.NE ;Return to get: next character

DELAY BEFORE READYING "ONITOR

ClIKDLAY:DSZ CNIER ;Decremcnt the counter - if nou zero
JMP DLAY ;delay a while longer
LDA 1, DLAYCNT ;Otherwise, reset delay values and
STA 1 , C,,'ER
JMP REDYTSN ;allow MONITOR to take control

DLAY: LDA . , PULSC ;Load the number of pulse counts
. SYSTM
.DELAY ;Delay processing for the time allotted
JMP @ .ER

JiP RI)LINE ;Return to check the input again

DEFINE VARIABLES AND BUFFERS

PULSC: 3 ;3 decimal counts -- 3/10 sec
CNTER: 32 ;Initial count is 26 decimal
DLAYCN.T:32 ;This creates a 7-1/2 sec delay
TSKPRI: 0 ;MONITOR's task priority is 0

HATPTR: MtATBUFR ;A pointer to start of Match Buffer
MATSTRT : IATBUFR ; Same
FUATBUF:0 ;Location of a full Hatch Buffer

RSPSZ: 0 ;Te-porary location to store size of
;responses gathered froit CNVRT.SR

LF: 12 ;Line feed is an octal 12
CR: 15 ;Carriage return is an octal 15
PMSK: 177 ;Mask to strip parity bit

178

LO0OK AT TIlE NATCH BUFE , AND CWIPAPE TO EXPI:CTI'D l'.t:SOj:SLS

CO1,PAR: LTDA 0, MATSTRT ;Load start of Match Buffer
LPA 1, .Fj;I ;Load size of first response expected
LDA 2, .IUl ;Load starting locatien of first
STA 1, R SPSZ ;response buffei. Store size

C11'.IAG: STA 0, 1A'IPTR ;After settinq pointer,
LDA 0, @NATPTR ;get the character input
LDA 3, 0, 2 ;Get first character of response buffer
SUBS 0, 3, SNR ;Are they the sas1s?
JhI' C1PI1l ;Yes - reset values to check ne.t input

LDA 0, A'TSTRT ;,No - start at the buffer beginning
LDA 1, .FB2 ;Load size of second expected response
LDA 2, .PUF2 ;Load start of second response buffer
STA 1, RSPSZ ;Store size

CPR2AG: STA 0, " ATPTR ;Look at characters just as before
LDA 0, GIAT P'
LDA 3, 0, 2
SUBS 0, 3, SNR
JMP CMPR2

OPEN1 VVQQ IF IT HAS BEEN CREATED

LDA 0, THPFL ;Load bytepointer to file VVQQ
SUB 1, 1 ;Load the default mask
. SYSTM
.OPEN 27 ;Open VVQQ on channel 27
J11P ERCIK ;Check for expected error condition
JMP WRTOFL-1 ;If no error, then begin output of

;file VVQQ to "system"

179

; OUTPU/T 1,::i xF'T'l iD 1"VM WXq"S TO)''.'UI AE P I]

LDA I, A'IS'iT ;If VVQQ does not exist, output
;Match Buffer conLents to terminal

OUTPUT: STA 1, ?fA'PT!! ;Start at begi nning of Match Buffer
LDA 0 , I

PChAE' ;Put a character to terminal - $TTO

LDA 2, i. IIoad location of lzist buffer charocter
SUB- 1, 2, S;E ;Is out)ut coxt lete?
JNii ' TOiR)LIN ;Yes - send carriam return and read

;the next line for input

I.C 1i, 1 ;No - increment buffer pointer and
JiP OUTPUT ;repeat

; DEFEU IE' 1FER PO1 TEI.S TO BUFFERS

OUTPTi,: BUFR ;Pointer to next nutput character
CHKIi'T. : BI,EN ;Pointer to buffer start
INPT : .UXFI, ;Pointer to neYxt input buffr loc:tico
MAXPi E : BU'E1+ 133 ;Pointer to the cnd of input b'uffer

OUTPUT CARI.AGE IRFTURN AS LAST Ct1ARACTER OF A ER] TE

TO.)LIN:IDA 0, CR ;Load carraige return
* SYS'ITE
.PC HAR ;Put carraige return to terminal
iMP c .FR
LDA] , ?ATSTP, T ;Reset pointers to be,5innin of .atch
STA 1, MATPTR ;Buffer and return to read the

JMP RDIAINE ;next line

180

COTIU" TO c()uAI:v IXIPECTED RESION:E; WITH I1i'UT

C11l]: L DA 0, A1ATI'iR ;Look at next. cir:racter in
INC c0, 0 ;respoi st buf for and mnt c h but 2er

INC 2, 2
DSZ RPSZ ;1ias the size of the expected response
J'P CmI:1AG ;been exceeded? N o - coni.icue ,rii g
LDA I ,AT ;Yes - reset buffer pol iters
STA I , NATPTR ;and return to read tle next 1inc
Ji.MP PDLINF

(I!'E!2 L DA 0, '.ATI'T R ;Do the srme for second response
I1,C 0, 0

IN C 2, 2
DSZ RSPSZ
,1iP CPI'2A(;
LDA 1, KA'TSTRT
STA 1 IATI'H
iMP RD~INE

CHtECK FOR AN EXPECTED ERROR COINDITION

IEtCim: 1LA I, .RDLE ;Load expected error code - ER L"
SU1, 1, 2, SNR ;Does file VVQQ exist?

, IP OUTPUT-I ;No - jura, to output to t r ains,!
LDA 1, .EREUT ;Load another expected error
SiUBi 1, 2, SZR ;Is this channel in us;e?
JXP C .ER ;No - state unexpected error condit ion

IF FILE VVQQ EXISTS, WRITE ALL INPUT TO IT

LDA 1 , NATSTRT ;Yes - write input buffer teVVO
WRTOtL: STA 1, 1IATPTR

LDA I, ONE ;Load one (1) - nurber of bytes to write
LDP& 0, NATPIT1 ;Load pointer to match huffer
mOVOL 0, 0 ;Make this a bytepointer to right tyte
. SYSTM
.WRIS 27 ;Write right byte to VVQQ
JiP (.ER

IDA I , MATPTR ;Look at pointer to -:tch buffer
LDA 2, FMATLUSII ;and locatioi. of last . :i:ract(
SUI;i 1, 2, SNR ;Is buffer writing co; lcte?

JMP TORDLINE ;Yes - return to read no:t line

INC I , I ;No- increment point .r and
JMP WRTOFL ;write next character to VVQQ

181

.ENLIFT: FRUT ; EM 2] laii
SFR1)Lj: : ;FN DLI; =7UL 12, 11 o , a not (:a a,
O 1NE:

$yr(Fol iI ENI11 r SER VICE" EPPY] NE1

01 A N I ()cdI cl~ d 1(1 iv i c ,T j()I Z, t '11 tu x Yt
311P 0, 3 1 imc aLftr ilterruprt Na erR to aov-

;tle prclccsf;or ;ta1,(., %s it is 1'o-t:

; chan, ;ed

$TT11I TI KIPT Si"I'VICi 1roUFJ:'E

111,1A: STA 3, US PJ ; Save the prey fovs procrs caro r atoby
STA 2, S,, \ VI2 alv<,ol acll:. .] Ators ZI- t ile c31r-r1
(TA 1 , SAV 1 1 ;bit .US]- i s User St-ai 1, Poiim. or
STA 0, S.\VE(i
1M1(VL- 0 , 0
ETA 0, SA VE C

1)IAC 0, TTll ; Input chnra ct or froa - $111
C PA 3 , PITSK ;(;tr ip par ity Ii t ;n-i

AND 3 , 0
STA 0, (1 INPTr ;store in TWI

LDA 1, INPTR ;Load poi-oter to nea.t PUiN, location
itC 1 , 1 , Iucreinont i.t.
I)DA 2, MAXPTR ,Lo, d pc)i T.t cr to la,3t buffer ot ry

Str 1,67-1, 2, SUNP ;Is buffor fullI? Yes --
31W C1lI,1 ,;jump to- sec, if I.utffor has bieni useR]
STA 1, 1 NP1)TR ;No - ,sLorc new pointer valuc

RE LD:EA 0, ;A N Restore thec state of the(pioce,;scz

LDtA 0, SAVEP
1.DA 1 , SAVIIl
LDA 2, SAVI-2
LDA 3, U - 1
JMP 0, 3 ,Re-turn to ne'Xt 10ra-ti(A aft,' ian 01 ~

CHEV LDlA 3, PUTPTR ;If outptr is still ai: Lhe ta(illniil
L PA 2, C11IIPTR ,of the(buf fer IE, cc ! ir, 1 1
SIIN817 2, 3 , SINR ;blit f (r overf 1I] pot a:n' a]i Ie ilY u 07in

Jiml) 1'ROBI , the pi ocCsnr to ia] I 0 i0>i c

STA 2, INPTR ; store now voluiie of INIPR and]
JM]' RETkN ,rot urn

PlIOBJ HALT ;Not a recove~rableace STe'

;]'. I 'iIX] TO P ' YI,'!; TO ' i!!.' CL I A] O , .I Y

OK~'.: ,S';T L

7RTII ;Abnorial return - error
Jl P 1 .11K

, DEFl-i STcOP;; A;.REAS AI) I;u'vizS

S AVi: 0 ;StoraIe arei for accuU I at; 0,
SAVVI 0 ;1, 2, and carr bit
SAVF2 0
SVI I C: 0

MATBUITIE:,BEK 133. ;T;atch boffer];; 91 dcir al
BIFE: ILK 133. ; Iacat inOr,. So does input buff'r

lEI'D SYS I U

4- + ++++++-+ 4 + - + + - + -

+ +

+ END SYSIIE.SR -
+ +

- - - - - -- - - - - --- - - - - - - - - - - I - - - - --

- -------- --- -- -- ---- --- ---- --- ---- ----1- -- ---

7 -A00 8L9 AIR FORCE INST OF TECH WRIGHT-PATTERSON Are ON scNOO-..(TC F/S 9/2CONSTRUCTION OF A GENERAL PURPOSE COMMND LANGUAGE FOR USE IN C-Ec,,

UNLSSIFIlED AFIT/BGCS/EE/80S-I5 N3"3MONSOONS[E -

C
C

C THIS IS THE CYBER ACTION FILE.
C ++++++ CREATED 7 AUGUST 1980; REV 01 ++

C
C THE FIRST CONTROL CARD IMAGE (I) CONTAINS EXPECTED RESPONSES FROM
C THE CYBER SYSTM.
I COMMAND-,..
C
C THIS COMMAND PERMITS LOCAL FILES TO BE SENT TO THE SYSTEM.
C CORRECT INPUT IS: PUT,LFN,SFNID,SFPASSRD
.CACT,PUT,#1 ,#2,#3,#4
lS COPYBF,INPUT,ZQY
WC XFER/A #1 QQVV/R
WS %EOF
WS REWIND,ZQY
Ws REQUEST,ZQZ,*PF
WS COPYBF,ZQY,ZQZ
WS CATALOG,ZQZ, 2,ID=#3,RP=999, PW=#4
WS RETURN,ZQZ,ZQY
END.
C THIS COMMAND PERMITS SYSTEM FILES TO BE RECEIVED LOCALLY.
C CORRECT INPUT IS: GET,SFN,IDSFPASSWRD,LFN
.CACT,CET,#1,#2,#3,4
WS ATTACH,QZQ,#j1 ,ID=l'2,PW=#3

RR
WS COPYSBF,QZQ,OUTPUT
RC XFER/A VVQQ A/R
WS RETUN,QZQ
END.
C THIS COM1AND PERMITS SYSTEM FILES TO BE PRINTED ON SYSTEM PRINTER.

C CORRECT INPUT IS: SPRINT,SFN,SFPASSWRD
.CACT,SPRINT,#1,#2
WS ATTACH,ZXQ,#1 ,PW=#2
WS REQUEST,ZYQ,*Q
WS COPYSBF,ZXQ,ZYQ
WS REWIND,ZYQ
WS ROUTE,ZYQ,DC=PR,TID=BB,FID=EO,ST=CSB
Ws RETURN,ZXQ,ZYQ
END.
C THIS COMMAND PERMITS SYSTEM FILES TO BE PUNCHED ON SYSTEM PUNCH.
C CORRECT INPUT IS: SPUNCH,SFN,SFPASSWRD
.CACT,SPUNCH,#1,#2
WS REQUEST,ZJQ,*Q
WS ATTACH,ZJJ,#1,PW=#2
WS COPYSBFZJJ,ZJQ
Ws REWIND,ZJQ
WS ROUTEZJQ,DC=PUFID-NE9,TID-BB,ST-CSB
WS RETURN,ZJQZJJ
END.

184

C THIS COMIAND PERMITS SYSTEM FILES TO BE DELETED.
C CORRECT INPUT JS: DELETE,SFN,SFPASSWRD

.CACT,DELETE,# 1 ,V2
WS PURCE,UZU, #1,PW=#2

WS RETURN,UZU
END.
C THIS CONMAND PERMITS DISPLAY OF SYSTEM FILES IN USE (CREATED,ATTACHED).

C CORRECT INPUT IS: FILES

.CACT,FILES

WS FILES
END.

C THIS COMMAND PERMITS DISPLAY OF SYSTEM PERMANENT FILES (AUDIT).

C CORRECT INPUT IS: PFILES,USER ID (PROB NUM)
.CACT,PFILES ,#I

WS AUDIT ,AI=P,ID=#l

END.
C THIS COMMAND PERMITS USER ACCESS TO THE SYSTEM.

C CORRECT INPUT IS: LOGON,USER ID (PROB NUM),USER PASSWRD

.CACT,LOCON,#1 #2

WL Dial the CDC CYBER telephone number (currently 5180 or 5159),

WL wait for the tone, and then place the telephone headset

WL into the modem receiver. Now strike any key

WL on the keyboard.

RW

WS LOGIN,#I,02,777

END.

C THIS COIMMAND TERMINATES ACCESS TO THE SYSTEM.
C CORRECT INPUT IS: LOGOFF

.CACT,LOGOFF

WS LOGOUT

WL The CDC CYBER is logged out. Enter uparrow L, "^L", to return

WL to the local NOVA/ECLIPSE CLI.

END.

185

C THIS COMMIAND PERMITS LOCAL FILES TO BE PRINTED ON SYSTEM PRINTER.
C CORRECT I1NPUT IS: LPRINT,LFN
.CACT,LPRINT,J1
WS REQUEST,XZX,*Q
WS COPYBF,INPUT,XZY
WC XFER/A #'1 QQVV/R
WS %EOF
WS REWIND,XZY
WS COPYSBF,XZY,XZX
WS REWIND,XZX
WS ROUTE,XZX,DC=PR,FID=NEO,TID=BB,ST=CSB
WS RETURN,XZX,XZY
END.
C THIS COM1MAND PERMITS LOCAL FILES TO BE PUNCHED ON SYSTEM PUNCH.
C CORRECT INPUT IS: LPUNCH,LFN
.CACT ,LPUNCH ,#1
WS REQUEST,JZX,*Q
WS COPYBF,INPUT,JZY
WC XFER/A #1 QQVV/R
WS %EOF
WS REWIND,JZY
WS COPYBF)JZY,JZX
WS REWIND,JZX
WS ROUTE,JZX,DC=PU ,FID=NEO ,TID=BB, ST=CSB
WS RETURN,JZX,JZY
END.
C THIS COMMAND PERMITS SYSTEM FILES TO BE EXECUTED (BATCHED) Oil SYSTEM.
C CORRECT INPUT IS: SBATCH,SFN,SFPASSWRD,DISPOSITION,TERMINAL ID
.CACT,SBATCH,#1 ,#2,#3,ff4
WS ATTACH,VQY,#1 ,PW=#2
WS BATCH,VQY,#3 ,Y=#4
WS RETURN,VQY
END.
C THIS COMMAND PERMITS LOCAL FILES TO BE EXECUTED (BATCHED) ON SYSTEM.
C CORRECT INPUT IS: LBATCH,LFN4,DISPOSITION,TERMINAL ID
.CACT,LBATCH,#~l ,i2,#3
WS COPYBF, INPUT,VQX
WC XFER/A #1 QQVV/R
WS %EOF
WS REWIND,VQX
WS BATCH,VQX,#2 ,Y=#3
WS RETURN,VQX
END.
FINISH.

186

C
C-

C
C THIS ACTION FILE MAY BE EXPANDED OR CONTRACTED, PROVIDED ENTRIES MEET
C THE FOLLOWING FORMAT AND CONTENT GUIDELINES:
C
C A. COMMAND IDENTIFICATION LINES ARE PRECEDED BY ".CACT"
C B. THE LAST LINE IN EACH DISTINCT COMIIAND SEQUENCE MUST BE "END."
C C. THE LAST LINE OF TIlE ENTIRE FILE MUST BE "FINISH.", WITH THE
C EXCEPTION OF COMMENT LINES.
C D. COMMENT LINES MAY BE PRECEDED BY ANY CHARACTER NOT RESERVED
C AS INDICATED ABOVE OR BELOW. FOR CONVENIENCE, "C" HAS BEEN
C CHOSEN.
C E. THE FIRST TWO COLUMNS OF EACH LINE SATISFY CONTROL FUNCTIONS:
C
C 1) "1 " PRECEDES THE EXPECTED RESPONSES FROM THE SYSTEM.
C THEY ARE USED TO INITIALIZE THE EXPECTED RESPONSE ARRAYS.
C 2) "WS" PRECEDES INFORMATION TO BE WRITTEN TO THE SYSTEM.
C 3) "WL" PRECEDES INFORMATION TO BE WRITTEN TO THIE LOCAL TERM.
C 4) "RW" PRECEDES BLANK LINE; INDICATES A BACK-TO-BACK LOCAL
C TERNI READ FOLLOWED BY A SYSTEM WRITE.
C 5) "WC" PRECEDES CALL TO COPY A LOCAL FILE AND WRITE IT
C TO THE SYSTEM.
C 6) "RC" PRECEDES CALL TO COPY A LOCAL FILE THAT HAS BEEN
C READ FROM THE SYSTEM.
C 7) "RR" PRECEDES BLANK LINE; INDICATES THAT AN "RC" CONTROL
C WILL FOLLOW AND MAKES READY A LOCAL FILE FOR THE READ.
C 8) SEE A THROUGH D ABOVE FOR OTHER CONTROL FUNCTIONS.
C
C F. ALL LINES (CONTROL CHARACTERS) MUST BEGIN IN COLUMN ONE (1);
C ALL INFORMATION IN LINES OTHER THAN THOSE DESCRIBED IN A ThROUGH D
C ABOVE MUST CONTINUE IN OR AFTER COLUMN NINE (9), EXCEPT FOR COMMENT
C LINES. (TABS CANNOT BE USED ANYWHERE IN THE ACTION FILE, EXCEPT
C IN COMMENT LINES AFTER THEIR CONTROL CHARACTERS.)
C
C
C ---
C ---

187

• - -

C THIS IS THE DEC ACTION FILE. THERE ARE NO ENTRIES
C AS OF 15 JULY 1980.
C
I
FINISH.

C THIS IS THE VAX ACTION FILE. THERE APE NO ENTRIES
C AS OF 15 JULY 1980.
C
I
FINISH.

C THIS IS MY OWN ACTION FILE. THERE ARE NO ENTRIES

C AS OF 15 JULY 1980.
C
I
FINISH.

(
t 188t ________________________________

VITA

Wayne Griess was born on 5 April 1949 in Scottsbluff,

Nebraska. He graduated from high school in Cheyenne, Wyoming in

1967 and attended the University of Wyoming from which he

received the degree of Bachelor of Science in 1971. Upon

graduation, he received a commission in the USAF through the

ROTC program. lie entered active duty as a communications

operations officer, first serving with the 1879tb Communications

Squadron, Richards-Gebaur AFB, Missouri. He then served as

Voice Operations Branch Chief, 1931st Communications Group,

Elmendorf AFB, Alaska. During this time he earned a Masters of

Public Administration degree from the University of Alaska,

Anchorage. He was then the Commander, 2064tli Communications

Squadron, Shemya AFB, Alaska until entering the School of

Engineering, Air Force Institute of Technology, in January 1979.

Permanent address: 1950 E. 18th Street
Cheyenne, Wyoming 82001

189

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFIT/GCS/EE/80S- 15 .

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

CONSTRUCTION OF A GENERAL PURPOSE MS Thesis
COMMAND LANGUAGE FOR USE IN
COMPUTER TO COMPUTER DIALOG 6. PERFORMING 01G. REPORT NUMBER

7. AUTHOR(#) 8. CONTRACT OR GRANT NUMBER(*)

Wayne D. Griess
Captain

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Air Force Institute of Technology (AFIT-EN) AREA & WORK UNIT NUMBERS

Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

September, 1980
13. NUMBER OF PAGES

198
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

1Sa. DECLASSIFICATIONDOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

A e p elease; lAW AFR 190-17

FRDICR C. LYNCH Major, USAF
Director of Public Affairs

19. KEY WORDS (Continue on reverse side It necessary and Identify by block number)

Command Language
Computer to computer dialog
Computer Interfacing/Interconnection
Command Language Interpreter

20. ABSTRACT (Continue on reverse lide If necessary and Identify by block number)

Ywo computer programs were developed and implemented to enable
intercommunication between a Data General NOVA/ECLIPSE computer system
and another modem linked computer system. One program, called TTERMOP,
allows a user to sit at a NOVA terminal and interact with a
connected system in a transparent mode. The other program, called MONITOR,
is a comand language interpreter that examines and executes instructions

(contained within an action file. An action file, consisting of instruction

DD FOR, 1473 EOITION OF I NOVO 5IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (11h1en Dote Entered)

UNCLASSIFIED

SETURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

strings and associated control parameters, is designed to be dependent
upon a connected system with regard to contents, yet independent of such a
connected system with regard to structure and format. The interpreter is
written in FORTRAN IV with FORTRAN and assembly language modules.
Actual implementation of the programs is accomplished between the
NOVA/ECLIPSE and the Aeronautical Systems Division Control Data CYBER
computer system. ASCII data files between 20 and 35,000 bytes have
been transferred between the two interconnected systems,
each transfer initiated by a single string command
acceptable to the interpreter and compatible with a tailored
action file for the CYBER system. The programs were designed to be
flexible enough for use with several different connected systems, and
general enough to be hosted on a system other than the NOVA/ECLIPSE ...
However, no attempt is made to implement the programs outside of the
NOVA/ECLIPSE - CYBER environment.

II

UNCLASSIFIED

SECURITY CLASSIFICATION OF AGE -b4,, ft. Fr

DAT

DI

